Skip to main content
Log in

Differences in the metabolic status of healthy adults with and without active brown adipose tissue

Unterschiede im Stoffwechselstatus gesunder Erwachsener mit und ohne aktivem braunem Fettgewebe

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

An Erratum to this article was published on 21 March 2014

Summary

Background

Previous studies have proven the existence of active brown adipose tissue (BAT) in adults; however, its effect on systematic metabolism remains unclear.

Aim

The current study was designed to investigate the differences in the metabolic profiles of healthy adults with and without active BAT using positron emission tomography–computed tomography (PET-CT) scans in the un-stimulated state.

Methods

A cross-sectional analysis was performed to assess the health of adults using PET-CT whole-body scans at Huashan Hospital Medical Centre between November 2009 and May 2010. A total of 62 healthy adults with active BAT were enrolled in the BAT-positive group. For each positive subject, a same-gender individual who underwent PET-CT the same day and who had no detectable BAT was chosen as the negative control. Body composition was measured, and blood samples were collected for assays of metabolic profiles and other biomarkers.

Results

In both the male and female groups, BAT-positive individuals were younger and had lower body mass indexes, fasting insulin, insulin resistance, and leptin, but a greater level of high-density lipoprotein cholesterol compared with the negative controls. In the male group, body fat content and levels of tumor necrosis factor-α were significantly lower in the BAT-positive than in the negative control group.

Conclusions

The healthy adults with active BAT in an un-stimulated state had favorable metabolic profiles suggesting that active BAT may be a potential target for preventing and treating obesity and other metabolic disorders.

Zusammenfassung

Grundlagen

Frühere Studien haben die Existenz von aktivem braunem Fettgewebe (BAT) bei Erwachsenen nachgewiesen. Die Wirkung dieses Gewebes auf den systemischen Stoffwechsel bleibt allerdings unklar.

Ziel

Die vorliegende Studie plante zu erforschen, ob ein Unterschied in den Stoffwechselprofilen gesunder Erwachsener mit beziehungsweise ohne BAT besteht, wobei PET-CT Scans im nicht stimulierten Zustand verwendet wurden.

Methodik

Am Huashan Hospital Medical Center wurde zwischen November 2009 und Mai 2010 eine horizontale Analyse durchgeführt, um die Gesundheit von Erwachsenen zu erfassen, wobei PET-CT Ganzkörper Scans zur Verwendung gelangten. Insgesamt wurden 62 gesunde Erwachsene mit aktivem BAT in die BAT positive Gruppe aufgenommen. Für jede positiv getestete Person wurde als negative Kontrolle eine Person gleichen Geschlechts ausgewählt, die am selben Tag eine PET-CT Untersuchung hatte und bei der kein aktives BAT nachgewiesen werden konnte. Die Körperzusammensetzung wurde gemessen und Blutproben zur Bestimmung von Stoffwechselprofilen und anderer Bio-Marker wurden abgenommen.

Ergebnisse

Sowohl die männlichen als auch die weiblichen BAT positiven Individuen waren jünger und hatten einen geringeren BMI, ein niedrigeres Nüchtern-Insulin, niedrigere Insulinresistenz und Leptin. Nur das HDL-Cholesterin war im Vergleich zur BAT negativen Gruppe erhöht. Bei den BAT positiven Männern war der Körperfettgehalt und die Konzentration von Tumornekrosefaktor-alpha (TNF alpha) signifikant niedriger als bei den BAT negativen Kontrollen.

Schlussfolgerungen

Die gesunden Erwachsenen mit aktivem BAT hatten im nicht-stimulierten Zustand ein günstigeres Stoffwechselprofil. Dies legt nahe, dass das aktive BAT ein mögliches Zielorgan bei der Vorbeugung und Behandlung der Adipositas und anderer Stoffwechselerkrankungen sein könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.

    Article  CAS  PubMed  Google Scholar 

  2. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  5. Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34:1018–22.

    Article  PubMed  Google Scholar 

  6. Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9.

    Article  PubMed  Google Scholar 

  7. Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barbaras L, Tal I, Palmer MR, et al. Shareware program for nuclear medicine and PET/CT PACS display and processing. AJR Am J Roentgenol. 2007;188:W565–8.

    Google Scholar 

  9. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.

    Google Scholar 

  10. Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25:71–80.

    Article  CAS  PubMed  Google Scholar 

  11. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6.

    Google Scholar 

  12. Stefan N, Pfannenberg C, Haring HU. The importance of brown adipose tissue. N Engl J Med. 2009;361:416–7 (author reply 418–21).

  13. Grundy SM, Brewer HB Jr., Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.

    Article  PubMed  Google Scholar 

  14. Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314:1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Pardo M, Roca-Rivada A, Seoane LM, Casanueva FF. Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine. 2012;41:374–83.

    Article  CAS  PubMed  Google Scholar 

  16. Tousignant B, Faraj M, Conus F, et al. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study. Int J Obes (Lond). 2008;32:1626–32.

    Google Scholar 

  17. Goropashnaya AV, Herron J, Sexton M, et al. Relationships between plasma adiponectin and body fat distribution, insulin sensitivity, and plasma lipoproteins in Alaskan Yup’ik Eskimos: the Center for Alaska Native Health Research study. Metabolism. 2009;58:22–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Good M, Newell FM, Haupt LM, et al. TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue-influence of BMI and adipose distribution. Diab Vasc Dis Res. 2006;3:26–33.

    Article  PubMed  Google Scholar 

  19. Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    Article  CAS  PubMed  Google Scholar 

  20. Arsenault BJ, Rana JS, Stroes ES, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2009;55:35–41.

    Article  PubMed  Google Scholar 

  21. Li MD. Leptin and beyond: an odyssey to the central control of body weight. Yale J Biol Med. 2011;84:1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Margareto J, Marti A, Martinez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma. J Nutr Biochem. 2001;12:130–7.

    Article  CAS  PubMed  Google Scholar 

  23. Enriori PJ, Sinnayah P, Simonds SE, et al. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31:12189–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci. 2011;31:1873–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest. 1997;100:2858–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B. 2006;176:663–71.

    Article  CAS  PubMed  Google Scholar 

  27. Cancello R, Zingaretti MC, Sarzani R, et al. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology. 1998;139:4747–50.

    Article  CAS  PubMed  Google Scholar 

  28. Korac A, Buzadzic B, Petrovic V, et al. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol. 2008;46:103–9.

    Article  PubMed  Google Scholar 

  29. Lecoultre V, Ravussin E. Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care. 2011;14:1–6.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshioka K, Yoshida T, Wakabayashi Y, et al. Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obese rats. Endocrinol Jpn. 1989;36:403–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of PET Center (Huashan Hospital) for their help in performing the study, the staff from Division of Endocrinology and Metabolism and the Center of Laboratory Medicine (Huashan Hospital) for their technical assistance, and the subjects for their participation in the study.

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Ye, H., Miao, Q. et al. Differences in the metabolic status of healthy adults with and without active brown adipose tissue. Wien Klin Wochenschr 125, 687–695 (2013). https://doi.org/10.1007/s00508-013-0431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-013-0431-2

Keywords

Schlüsselwörter

Navigation