Skip to main content
Log in

Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties

  • Original Article
  • Published:
Polymer Journal Submit manuscript

Abstract

Benzoxazine polymers containing phenyleneethynylene and polypropylene glycol (PPG) in the main chain, poly(1)230, poly(1)400 and poly(1)2000, were synthesized by a Mannich reaction of the corresponding ethynylenebisphenol, paraformaldehyde and PPG diamines with Mn = 230–2,000. The curing temperature of poly(1) decreased from 212 to 182 °C as the Mn of the PPG chain decreased from 2,000 to 230. Poly(1)230–2000 was heated at 200–250 °C to obtain the corresponding polymers, and poly(1)′230–2000 was cured by ring-opening polymerization of the benzoxazine moieties. The structures of the polymers were elucidated by 1H-NMR and IR spectroscopies before and after curing. Poly(1)′230–2000 became flexible upon increasing the Mn of the PPG chain. Poly(1)′230 showed Tg as high as 253 °C. Poly(1)′230–2000 was thermally stable at approximately 300 °C, presumably due to the existence of rigid phenyleneethynylene moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci. 1996;34:1019–30.

    Article  CAS  Google Scholar 

  2. Kim HD, Ishida H. A study on hydrogen-bonded network structure of polybenzoxazines. J Phys Chem A. 2002;106:3271–80.

    Article  CAS  Google Scholar 

  3. Nair CPR. Advances in addition-cure phenolic resins. Prog Polym Sci. 2004;29:401–98.

    Article  CAS  Google Scholar 

  4. Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines–new high performance thermosetting resins: synthesis and properties. Prog Polym Sci. 2007;32:1344–91.

    Article  CAS  Google Scholar 

  5. Ishida H. Chapter 1 Overview and Historical Background of Polybenzoxazine Research. In: Ishida H, Agag T editors, Handbook of benzoxazine resins, Amsterdam: Elsevier B. V.; 2011. pp. 3–81.

  6. Froimowicz P, Zhang K, Ishida H. Intramolecular hydrogen bonding in benzoxazines: when structural design becomes functional. Chem Eur J. 2016;22:2691–707.

    Article  CAS  PubMed  Google Scholar 

  7. Agag T, Takeichi T. Synthesis and characterization of novel benzoxazine monomers containing p-allyl groups and their high performance thermosets. Macromolecules. 2003;36:6010–7.

    Article  CAS  Google Scholar 

  8. Takeichi T, Kawauchi T, Agag T. High performance polybenzoxazines as a novel type of phenolic resin. Polym J. 2008;40:1121–31.

    Article  CAS  Google Scholar 

  9. Kim HJ, Brunovska Z, Ishida H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer. 1999;40:6565–73.

    Article  CAS  Google Scholar 

  10. Liu C, Sun M, Zhang B, Zhang X, Li J, Li Q. Curing kinetics, thermal, and adhesive properties of acetylene-terminated benzoxazine. J Appl Polym Sci. 2017;134:44547.

    Google Scholar 

  11. Sun L, Zhang K, Min C, Liu Y, Wang Y, Zhang J, et al. Synthesis, characterization and structural thermally rearrangement of ortho-amide functional benzoxazine containing acetylene group. Thermochim Acta. 2018;668:1–8.

    Article  CAS  Google Scholar 

  12. Li P, Dai J, Xu Y, Ran Q, Gu Y. A conjugated alkyne functional bicyclic polybenzoxazine with superior heat resistance. J Polym Sci Part A. 2019;57:1587–92.

    Article  CAS  Google Scholar 

  13. Agag T, Takeichi T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines. Macromolecules. 2001;34:7257–63.

    Article  CAS  Google Scholar 

  14. Nagai A, Kamei Y, Wang XS, Omura M, Sudo A, Nishida H, et al. Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol and benzoxazine groups in the main chain by a step-growth click-coupling reaction. J Polym Sci Part A. 2008;46:2316–25.

    Article  CAS  Google Scholar 

  15. Chernykh A, Agag T, Ishida H. Effect of polymerizing diacetylene groups on the lowering of polymerization temperature of benzoxazine groups in the highly thermally stable, main-chain-type polybenzoxazines. Macromolecules. 2009;42:5121–7.

    Article  CAS  Google Scholar 

  16. Ishida H, Low HY. Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites. J Appl Polym Sci. 1998;69:2559–67.

    Article  CAS  Google Scholar 

  17. Huang JM, Kuo SWY, Lee J, Chang FC. Synthesis and characterization of a vinyl-terminated benzoxazine monomer and its blends with polyethylene oxide. J Polym Sci. 2007;45:644–53.

    Article  CAS  Google Scholar 

  18. Liu YL, Yu JM, Chou CI. Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. J Polym Sci Part A. 2004;42:5954–63.

    Article  CAS  Google Scholar 

  19. Chaisuwan T, Ishida H. High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications. J Appl Polym Sci. 2006;101:548–58.

    Article  CAS  Google Scholar 

  20. Agag T, Takeichi T. Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. J Polym Sci Part A. 2006;44:1424–35.

    Article  CAS  Google Scholar 

  21. Takeichi T, Guo Y, Agag T. Synthesis and characterization of poly(urethane-benzoxazine) films as novel type of polyurethane/phenolic resin composites. J Polym Sci Part A. 2000;38:4165–76.

    Article  CAS  Google Scholar 

  22. Takeichi T, Agag T, Zeidam R. Preparation and properties of polybenzoxazine/poly(imidesiloxane) alloys: in situ ring-opening polymerization of benzoxazine in the presence of soluble poly(imide-siloxane)s. J Polym Sci Part A. 2001;39:2633–41.

    Article  CAS  Google Scholar 

  23. Yeganeh H, Nouri MR, Ghaffari M. Synthesis and properties of polybenzoxazine modified polyurethanes as a new type of electrical insulators with improved thermal stability. Polym Eng Sci. 2008;48:1329–38.

    Article  CAS  Google Scholar 

  24. Uchida S, Kawauchi T, Furukawa N, Takeichi T. Polymer alloys of high-molecular-weight benzoxazine and epoxy resin. High Perform Polym. 2014;26:846–55.

    Article  Google Scholar 

  25. Wang H, Dayo AQ, Wang J, Wang J-Y, Liu W-B. Trifunctional quinoxaline-based maleimide and its polymer alloys with benzoxazine: synthesis, characterization, and properties. J Appl Polym Sci. 2021;138:49694.

  26. Takeichi T, Kano T, Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 2005;46:12172–80.

    Article  CAS  Google Scholar 

  27. Chernykh A, Liu J, Ishida H. Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer. 2006;47:7664–9.

    Article  CAS  Google Scholar 

  28. Agag T, Takeichi T. High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets. J Polym Sci Part A. 2007;45:1878–88.

    Article  CAS  Google Scholar 

  29. Liu J, Agag T, Ishida H. Main-chain benzoxazine oligomers: a new approach for resin transfer moldable neat benzoxazines for high performance applications. Polymer. 2010;51:5688–94.

    Article  CAS  Google Scholar 

  30. Altinkok C, Kiskan B, Yagci Y. Synthesis and characterization of sulfone containing main chain oligobenzoxazine precursors. J Polym Sci Part A. 2011;49:2445–50.

    Article  CAS  Google Scholar 

  31. Lin CH, Chang SL, Shen TY, Shih YS, Lina HT, Wang CF. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym Chem. 2012;3:935–45.

    Article  CAS  Google Scholar 

  32. Demir KD, Kiskan B, Latthe SS, Demirelc AL, Yagci Y. Thermally curable fluorinated main chain benzoxazine polyethers via Ullmann coupling. Polym Chem. 2013;4:2106–14.

    Article  CAS  Google Scholar 

  33. Chen CH, Lin CH, Wong TI, Wang MW, Juang TY. Thermosets derived from diallyl-containing main-chain type benzoxazine polymers. Polymer. 2018;149:286–93.

    Article  CAS  Google Scholar 

  34. El-Mahdya AFM, Kuo SW. Direct synthesis of poly(benzoxazine imide) from an ortho-benzoxazine: its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-vinylphenol). Polym Chem. 2018;9:1815–26.

    Article  Google Scholar 

  35. Zeng M, Chen J, Xu Q, Huang Y, Feng Z, Gu Y. A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polym Chem. 2018;9:2913–25.

    Article  CAS  Google Scholar 

  36. Han M, You S, Wang Y, Zhang K, Yang S. Synthesis of highly thermally stable daidzein-based main-chain-type benzoxazine resins. Polymers. 2019;11:1341.

    Article  PubMed Central  Google Scholar 

  37. Goto M, Miyagi Y, Minami M, Sanda F. Synthesis and crosslinking reaction of polyacetylenes substituted with benzoxazine rings: thermally highly stable benzoxazine resins. J Polym Sci Part A. 2018;56:1884–93.

    Article  CAS  Google Scholar 

  38. Goto M, Yajima T, Minami M, Sogawa H, Sanda F. Synthesis and cross-linking of a benzoxazine-containing anthracene moiety: thermally stable photoluminescent benzoxazine resin. Macromolecules. 2020;53:6640–8.

    Article  CAS  Google Scholar 

  39. Kobayashi T, Goto M, Minami M, Sanda F. Synthesis and crosslinking reaction of a novel polymer containing benzoxazine and phenyleneethynylene moieties in the main chain. J Polym Sci Part A. 2019;57:2581–9.

    Article  CAS  Google Scholar 

  40. Mohamed MG, Kuo SW. Crown ether-functionalized polybenzoxazine for metal ion adsorption. Macromolecules. 2020;53:2420–9.

    Article  CAS  Google Scholar 

  41. Takeichi T, Kano T, Agag T, Kawauchi T, Furukawa N. Preparation of high molecular weight polybenzoxazine prepolymers containing siloxane unites and properties of their thermosets. J Polym Sci Part A. 2010;48:5945–52.

    Article  CAS  Google Scholar 

  42. Agag T, Geiger S, Alhassan SM, Qutubuddin S, Ishida H. Low-viscosity polyether-based main-chain benzoxazine polymers: precursors for flexible thermosetting polymers. Macromolecules. 2010;43:7122–7.

    Article  CAS  Google Scholar 

  43. Rimdusit S, Lohwerathama M, Hemvichian K, Kasemsiri P, Dueramae I. Shape memory polymers from benzoxazine-modified epoxy. Smart Mater Struct. 2013;22:075033.

    Article  CAS  Google Scholar 

  44. Liu Y, Huang J, Su X, Han M, Li H, Run M, et al. Shape memory polybenzoxazines based on polyetheramine. React Funct Polym. 2016;102:62–69.

    Article  CAS  Google Scholar 

  45. Zhang S, Peng Y, Xue W, Shen S, Li C, Li Z, et al. Synthesis, dynamic mechanical properties, and shape memory effect of polybenzoxazines based on monofluorophenol isomers and polyetheramines. Polymer. 2019;166:169–77.

    Article  CAS  Google Scholar 

  46. Alhwaigea AA, Ishida H, Qutubuddin S. Poly(benzoxazine-f-chitosan) films: the role of aldehyde neighboring groups on chemical interaction of benzoxazine precursors with chitosan. Carbohyd Polym. 2019;209:122–9.

    Article  Google Scholar 

  47. Cai W, Zegaoui A, Zhang L, Dayo AQ, Ghouti HA, Wang J, et al. One-pot synthesis, characterization and polymerization of hyperbranched benzoxazine resins derived from A2+ B3 monomers. Mater Today Commun. 2019;21:100638.

    Article  CAS  Google Scholar 

  48. Sha XL, Yuan L, Liang G, Gu A. Preparation of high performance bio-based benzoxazine resin through a green solvent-free strategy for shape memory application. Polymer. 2020;202:122673.

    Article  CAS  Google Scholar 

  49. Khan MM, Halder K, Shishatskiy S, Filiz V. Synthesis and crosslinking of polyether-based main chain benzoxazine polymers and their gas separation performance. Polymers. 2018;10:221.

    Article  CAS  PubMed Central  Google Scholar 

  50. Lu G, Dai J, Liu J, Tian S, Xu Y, Teng N, et al. A new sight into bio-based polybenzoxazine: from tunable thermal and mechanical properties to excellent marine antifouling performance. ACS Omega. 2020;5:3763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Xu YZ, Fu YF, Liu XD. Latent curing systems stabilized by reaction equilibrium in homogeneous mixtures of benzoxazine and amine. Sci Rep. 2016;6:38584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su X, Song S, Zhang C, Huang J, Liu Y, Run M, et al. Dynamic mechanical and shape memory properties of polybenzoxazines based on aminopropyl-terminated siloxanes. J Appl Polym Sci. 2016;133:44121.

    Article  Google Scholar 

  53. Kiskan B, Koz B, Yagci Y. Synthesis and characterization of fluid 1,3-benzoxazine monomers and their thermally activated curing. J Polym Sci Part A. 2009;47:6955–61.

    Article  CAS  Google Scholar 

  54. Kudoh R, Sudo A, Endo T. A highly reactive benzoxazine monomer, 1-(2-Hydroxyethyl)-1,3-benzoxazine: activation of benzoxazine by neighboring group participation of hydroxyl group. Macromolecules. 2010;43:1185–7.

    Article  CAS  Google Scholar 

  55. Andreu R, Reina JA, Ronda JC. Studies on the thermal polymerization of substituted benzoxazine monomers: electronic effects. J Polym Sci Part A. 2008;46:3353–66.

    Article  CAS  Google Scholar 

  56. Li X, Luo X, Liu M, Ran QC, Gu Y. The catalytic mechanism of benzoxazine to the polymerization of cyanate ester. Mater Chem Phys. 2014;148:328–34.

    Article  CAS  Google Scholar 

  57. Ohashi S, Cassidy F, Huang S, Chiou K, Ishida H. Synthesis and ring-opening polymerization of 2-substituted 1,3-benzoxazine: the first observation of the polymerization of oxazine ring-substituted benzoxazines. Polym Chem. 2016;7:7177–84.

    Article  CAS  Google Scholar 

  58. Fang X, Rogers DF, Scola DA, Stevens MP. A study of the thermal cure of a phenylethynyl-terminated imide model compound and a phenylethynyl-terminated imide oligomer (PETI-5). J Polym Sci Part A. 1998;36:461–70.

    Article  CAS  Google Scholar 

  59. Demir KD, Kiskan B, Yagci Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules. 2011;44:1801–7.

    Article  Google Scholar 

  60. Connell JW, Smith JG Jr., Hergenrother PM. Oligomers and polymers containing phenylethynyl groups. J Macromol Sci Part C. 2000;40:207–30.

    Article  Google Scholar 

  61. Nakamura K, Ando S, Takeichi T. Thermal analysis and solid-state 13C-NMR study of crosslink in polyimides containing acetylene groups in the main chain. Polymer. 2001;42:4045–54.

    Article  CAS  Google Scholar 

  62. Kimura H, Otsuka K, Matsumoto A, Fukuoka H, Oishi Y. Synthesis and characterization of phenylethynylcarbonyl terminated novel thermosetting imide compound. eXPRESS Polym Lett. 2013;7:161–71.

    Article  CAS  Google Scholar 

  63. Hu W, Huang J, Zhang X, Zhao S, Pei L, Li H, et al. UV and thermal dual responsive coatings with high adhesion and mechanical robust properties. Prog Org Coat. 2020;147:105771.

    Article  CAS  Google Scholar 

  64. Song LX, Guo XQ, Du FY, Bai L. Thermal degradation comparison of polypropylene glycol and its complex with β-cyclodextrin. Polym Degrad Stab. 2010;95:508–15.

    Article  CAS  Google Scholar 

  65. Khanlari T, Bayat Y, Bayat M. Synthesis, thermal stability and kinetic decomposition of triblock copolymer polypropylene glycol-poly glycidyl nitrate-polypropylene glycol (PPG-PGN-PPG). Polym Bull. 2020;77:5859–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Miyuki Harada and Ms. Saki Ota at Kansai University for the measurement of DMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumio Sanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2021_568_MOESM1_ESM.pdf

Main-Chain Type Benzoxazine Polymers Consisting of Polypropylene Glycol and Phenyleneethynylene Units. Spacer Effect on the Curing Behavior and Thermomechanical Properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Muraoka, M., Goto, M. et al. Main-chain type benzoxazine polymers consisting of polypropylene glycol and phenyleneethynylene units: spacer effect on curing behavior and thermomechanical properties. Polym J 54, 133–141 (2022). https://doi.org/10.1038/s41428-021-00568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00568-x

  • Springer Nature Limited

This article is cited by

Navigation