Skip to main content
Log in

Synthesis, thermal stability and kinetic decomposition of triblock copolymer polypropylene glycol–poly glycidyl nitrate–polypropylene glycol (PPG–PGN–PPG)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An energetic triblock copolymer PPG–PGN–PPG (Mn = 1886 g mol−1) was synthesized for the first time by cationic ring-opening polymerization of propylene oxide with low molecular weight poly glycidyl nitrate (PGN) (Mn = 1061 g mol−1) as a macroinitiator, in the presence of boron trifluoride etherate (BF3·OEt2) as the catalyst. The product obtained in high yield was characterized by FTIR, gel permeation chromatography and 1H and 13C NMR spectroscopy. The thermal properties of the triblock copolymer were characterized by differential scanning calorimeter (DSC). The result approved that the glass transition temperature of the triblock copolymer (Tg = − 58 °C) is lower than PGN (Tg = − 35 °C); also, it was more stable than that of PGN. The effect of heating rates (10, 20, 30 and 40 °C min−1) on the decomposition of the copolymer was evaluated. The decomposition temperature of this compound increased as the heating rate increased. The kinetic parameters such as activation energy and frequency factor for the thermal decomposition of the triblock copolymer were obtained from the DSC and DTG data by non-isothermal methods proposed by the ASTM E696, Flynn–Wall–Ozawa (FWO) and Kissinger methods. The values by the FWO method are in good agreement with ASTM and Kissinger methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mohan YM, Mani Y, Raju KM (2006) Synthesis of azido polymers as potential energetic propellant binders. Des Monomers Polym 9(3):201–236

    CAS  Google Scholar 

  2. Chaturvedi S, Dave PN (2015) Solid propellants: AP/HTPB composite propellants. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.12.033

    Article  Google Scholar 

  3. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, Hoboken

    Google Scholar 

  4. Jain S (2002) Solid propellant binders. J Sci Ind Res 61:899–911

    CAS  Google Scholar 

  5. COUTURIER R (1993) Advanced energetic binder propellants. In: Solid Rocket Propulsion Technology. Elsevier, Amsterdam, pp 477–524

  6. Provatas A (2000) Energetic polymers and plasticisers for explosive formulations—a review of recent advances. Defence Science and Technology Organisation Melbourne (Australia)

  7. Bayat Y, Bayat MH (2018) Study of thermal analysis and kinetic decomposition of polybutadiene acrylonitrile acrylic acid (PBAN). J Therm Anal Calorim 134(2):1091–1100

    CAS  Google Scholar 

  8. Diaz E, Brousseau P, Ampleman G, Prud’homme RE (2003) Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, PolyNIMMO and PolyGLYN. Propellants Explos Pyrotech 28(3):101–106

    CAS  Google Scholar 

  9. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24(1):1–30

    CAS  Google Scholar 

  10. Selim K, Özkar S, Yilmaz L (2000) Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants. J Appl Polym Sci 77(3):538–546

    CAS  Google Scholar 

  11. Shee SK, Reddy ST, Athar J, Sikder AK, Talawar M, Banerjee S, Khan MAS (2015) Probing the compatibility of energetic binder poly-glycidyl nitrate with energetic plasticizers: thermal, rheological and DFT studies. RSC Adv 5(123):101297–101308

    CAS  Google Scholar 

  12. Kishore K, Sridhara K (1999) Solid propellant chemistry: condensed phase behaviour of ammonium perchlorate-based solid propellants. Defence Research & Development Organisation, Ministry of Defence

  13. Provatas A (2003) Energetic plasticizer migration studies. Energ Mater 21(4):237–245

    CAS  Google Scholar 

  14. Bhowmik D, Sadavarte VS, Pande SM, Saraswat BS (2015) An energetic binder for the formulation of advanced solid rocket propellants. Cent Eur J Energ Mater 12(1):145–148

    CAS  Google Scholar 

  15. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161(2–3):589–607

    CAS  PubMed  Google Scholar 

  16. Desai H, Cunliffe A, Lewis T, Millar R, Paul N, Stewart M, Amass A (1996) Synthesis of narrow molecular weight α, ω-hydroxy telechelic poly(glycidyl nitrate) and estimation of theoretical heat of explosion. Polymer 37(15):3471–3476

    CAS  Google Scholar 

  17. Colclough ME, Desai H, Millar RW, Paul NC, Stewart MJ, Golding P (1994) Energetic polymers as binders in composite propellants and explosives. Polym Adv Technol 5(9):554–560

    CAS  Google Scholar 

  18. Dong Q, Li H, Liu X, Huang C (2018) Thermal and rheological properties of PGN, PNIMMO and P (GN/NIMMO) synthesized via mesylate precursors. Propellants Explos Pyrotech 43(3):294–299

    CAS  Google Scholar 

  19. Ang HG, Pisharath S (2012) Energetic polymers: binders and plasticizers for enhancing performance. Wiley, Hoboken

    Google Scholar 

  20. Abrishami F, Zohari N, Zeynali V (2019) Synthesis and kinetic study on the thermal degradation of triblock copolymer of polycaprolactone–poly(glycidyl nitrate)–polycaprolactone (PCL–PGN–PCL) as an energetic binder. Polym Adv Technol 30(3):640–647

    CAS  Google Scholar 

  21. Ghorbani YBM, Mohammadi MM, Jafari S (2014) Synthesis and characterization of PGN–PTHF–PGN as a new triblock copolymer. In: 11th International seminar on polymer science and technology. https://www.civilica.com/Paper-ISPST11-ISPST11_272.html

  22. Abrishami F, Zohari N, Zeynali V (2017) Synthesis and characterization of poly(glycidyl nitrate-block-caprolactone-block-glycidyl nitrate)(PGN-PCL-PGN) tri-block copolymer as a novel energetic binder. Propellants Explos Pyrotech 42(9):1032–1036

    CAS  Google Scholar 

  23. Ghorbani M, Bayat Y (2015) Synthesis and characterization of hydroxyl-terminated triblock copolymer of poly(glycidyl nitrate-block-butadiene-block-glycidyl nitrate) as potential energetic binder. Polym Sci Ser B 57(6):654–658

    CAS  Google Scholar 

  24. Sanderson AJ, Martins LJ, Dewey MA (2005) Process for making stable cured poly(glycidyl nitrate) and energetic compositions comprising same. Google Patents

  25. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H (2015) Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem Rev 116(4):2170–2243

    PubMed  Google Scholar 

  26. Ertem SP, Yilgor E, Kosak C, Wilkes GL, Zhang M, Yilgor I (2012) Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer 53(21):4614–4622

    Google Scholar 

  27. Wang Q, Wang L, Zhang X, Mi Z (2009) Thermal stability and kinetic of decomposition of nitrated HTPB. J Hazard Mater 172(2–3):1659–1664

    CAS  PubMed  Google Scholar 

  28. Martin J, Cadenato A, Salla J (1997) Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models. Thermochim Acta 306(1–2):115–126

    CAS  Google Scholar 

  29. Hassan M, Shehata A (2002) Studies on some acrylamido polymers and copolymer as stabilizers for nitrocellulose. J Appl Polym Sci 85(14):2808–2819

    CAS  Google Scholar 

  30. Lu Y-C, Kuo KK (1996) Thermal decomposition study of hydroxyl-terminated polybutadiene (HTPB) solid fuel. Thermochim Acta 275(2):181–191

    CAS  Google Scholar 

  31. Yi J-h, Zhao F-q, Xu S-y, Zhang L-y, Gao H-x (2009) Effects of pressure and TEGDN content on decomposition reaction mechanism and kinetics of DB gun propellant containing the mixed ester of TEGDN and NG. J Hazard Mater 165(1–3):853–859

    CAS  PubMed  Google Scholar 

  32. Ma H, Yan B, Li Z, Guan Y, Song J, Xu K, Hu R (2009) Preparation, non-isothermal decomposition kinetics, heat capacity and adiabatic time-to-explosion of NTO· DNAZ. J Hazard Mater 169(1–3):1068–1073

    CAS  PubMed  Google Scholar 

  33. Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H (2009) Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater 162(2–3):1141–1144

    CAS  PubMed  Google Scholar 

  34. Keshavarz MH (2009) Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater 162(2–3):1557–1562

    CAS  PubMed  Google Scholar 

  35. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JdR, Suárez-Iha MEV (2004) Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim 75(2):551–557

    CAS  Google Scholar 

  36. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D (2008) The simulation of the thermal behavior of energetic materials based on DSC and HFC signals. J Therm Anal Calorim 93(1):143–152

    CAS  Google Scholar 

  37. Zhang W, Ren H, Sun Y, Yan S, Jiao Q (2018) Effects of ester-terminated glycidyl azide polymer on the thermal stability and decomposition of GAP by TG-DSC-MS-FTIR and VST. J Therm Anal Calorim 132(3):1883–1892

    CAS  Google Scholar 

  38. Guo M, Ma Z, He L, He W, Wang Y (2017) Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical properties of nitramine propellants. J Therm Anal Calorim 130(2):909–918

    CAS  Google Scholar 

  39. Pisharath S, Ang HG (2007) Synthesis and thermal decomposition of GAP–Poly (BAMO) copolymer. Polym Degrad Stab 92(7):1365–1377

    CAS  Google Scholar 

  40. Zhang J, Xue B, Rao G, Chen L, Chen W (2018) Thermal decomposition characteristic and kinetics of DINA. J Therm Anal Calorim 133(1):727–735

    CAS  Google Scholar 

  41. Gołofit T, Zyśk K (2015) Thermal decomposition properties and compatibility of CL-20 with binders HTPB, PBAN, GAP and polyNIMMO. J Therm Anal Calorim 119(3):1931–1939

    Google Scholar 

  42. Lua AC, Su J (2006) Isothermal and non-isothermal pyrolysis kinetics of Kapton® polyimide. Polym Degrad Stab 91(1):144–153

    CAS  Google Scholar 

  43. Sivalingam G, De P, Karthik R, Madras G (2004) Thermal degradation kinetics of vinyl polyperoxide copolymers. Polym Degrad Stab 84(1):173–179

    CAS  Google Scholar 

  44. Morancho J, Salla J, Ramis X, Cadenato A (2004) Comparative study of the degradation kinetics of three powder thermoset coatings. Thermochim Acta 419(1–2):181–187

    CAS  Google Scholar 

  45. Tuffi R, D’Abramo S, Cafiero L, Trinca E, Ciprioti SV (2018) Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics. Express Polym Lett 12(1):82–99

    CAS  Google Scholar 

  46. Ries A, Canedo EL, Souto CR, Wellen RM (2016) Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide. Thermochim Acta 637:74–81

    CAS  Google Scholar 

  47. Singh A, Sharma TC, Kumar M, Narang JK, Kishore P, Srivastava A (2017) Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices. Def Technol 13(1):22–32

    Google Scholar 

  48. Li H, Pan R, Wang W, Zhang L (2014) Thermal decomposition and kinetics studies on poly (BDFAO/THF), poly (DFAMO/THF), and poly (BDFAO/DFAMO/THF). J Therm Anal Calorim 118(1):189–196

    CAS  Google Scholar 

  49. Howell B, Sastry B (1999) Comparison of the activation energies for the thermal decomposition of copper and nickel compounds obtained by various thermogravimetric methods. Thermochim Acta 340:311–314

    Google Scholar 

  50. Wang H, Tao X, Newton E (2004) Thermal degradation kinetics and lifetime prediction of a luminescent conducting polymer. Polym Int 53(1):20–26

    CAS  Google Scholar 

  51. Wan C, Tian G, Cui N, Zhang Y, Zhang Y (2004) Processing thermal stability and degradation kinetics of poly(vinyl chloride)/montmorillonite composites. J Appl Polym Sci 92(3):1521–1526

    CAS  Google Scholar 

  52. Satoh K, Kamigaito M, Sawamoto M (2000) Direct living cationic polymerization of p-hydroxystyrene with boron trifluoride etherate in the presence of water. Macromolecules 33(15):5405–5410

    CAS  Google Scholar 

  53. Uyar T, Hacaloğlu J (2002) Thermal degradation of poly(propylene oxide) and polyepichlorohydrin by direct pyrolysis mass spectrometry. J Anal Appl Pyrol 64(2):379–393

    CAS  Google Scholar 

  54. Zhang Z, Wang G, Luo N, Huang M, Jin M, Luo Y (2014) Thermal decomposition of energetic thermoplastic elastomers of poly(glycidyl nitrate). J Appl Polym Sci. https://doi.org/10.1002/app.40965

    Article  Google Scholar 

  55. Song LX, Guo XQ, Du FY, Bai L (2010) Thermal degradation comparison of polypropylene glycol and its complex with β-cyclodextrin. Polym Degrad Stab 95(4):508–515

    CAS  Google Scholar 

  56. Salla J, Morancho J, Cadenato A, Ramis X (2003) Non-isothermal degradation of a thermoset powder coating in inert and oxidant atmospheres. J Therm Anal Calorim 72(2):719–728

    CAS  Google Scholar 

  57. Li L, Guan C, Zhang A, Chen D, Qing Z (2004) Thermal stabilities and the thermal degradation kinetics of polyimides. Polym Degrad Stab 84(3):369–373

    CAS  Google Scholar 

  58. ASTM E (2005) 698-05 Standard test method for Arrhenius kinetic constants for thermally unstable materials using differential scanning calorimetry and the Flynn. Wall/Ozawa Method

  59. Sunitha M, Nair CR, Krishnan K, Ninan K (2001) Kinetics of Alder-ene reaction of Tris (2-allylphenoxy) triphenoxycyclotriphosphazene and bismaleimides—a DSC study. Thermochim Acta 374(2):159–169

    CAS  Google Scholar 

  60. Sovizi M, Hajimirsadeghi S, Naderizadeh B (2009) Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater 168(2–3):1134–1139

    CAS  PubMed  Google Scholar 

  61. Tompa AS, Boswell RF (2000) Thermal stability of a plastic bonded explosive. Thermochim Acta 357:169–175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Bayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanlari, T., Bayat, Y. & Bayat, M. Synthesis, thermal stability and kinetic decomposition of triblock copolymer polypropylene glycol–poly glycidyl nitrate–polypropylene glycol (PPG–PGN–PPG). Polym. Bull. 77, 5859–5878 (2020). https://doi.org/10.1007/s00289-019-03051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03051-z

Keywords

Navigation