Skip to main content

Polyvinylchloride (PVC): Structure and Properties Relationship

  • Chapter
  • First Online:
Polyvinylchloride-based Blends

Abstract

Polyvinylchloride (PVC) is one of the widely used synthetic polymers which can be used in many industries like packaging, automobiles, electrical, medical, sports and construction. It can be prepared by different polymerization techniques. Multiple additives like lubricants, fillers, processing aids, pigments, blowing agents, antioxidants, anti-aging agents, UV absorbers, etc., are used to tailor its properties. It can be processed by different techniques to manufacture different products. In this chapter, different methods for the synthesis of PVC along with various polymerization techniques used for its synthesis are discussed. Additionally, different additives, processing techniques, properties, and applications are also reviewed in this text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regnault V (1835) About the composition of the chlorinated hydrocarbon (oil of the oil-forming gas). Eur J Org Chem 14:22–38

    Google Scholar 

  2. Baumann E (1872) Uber einige vinylverbindungen. Liebigs Ann Pharm 163:308–322

    Google Scholar 

  3. Mark HF (1989) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  4. Morawetz H (1982) History of polymer science and technology. Marcel Dekker, New York

    Google Scholar 

  5. Braun D (2002) Recycling of PVC. Prog Polym Sci 27:2171–2195

    Article  CAS  Google Scholar 

  6. Nakamura S, Nakajima K, Yoshizawa Y, Matsubae-Yokoyama K, Nagasaka T (2009) Analyzing polyvinyl chloride in Japan with the waste inputeoutput material flow analysis model. J Ind Ecol 13:706–717

    Google Scholar 

  7. Endo K (2002) Synthesis and structure of poly(vinyl chloride). Prog Polym Sci 7:2021–2054

    Article  Google Scholar 

  8. Finch CA (1989) Encyclopedia of polymer science and engineering. Wiley, New York

    Google Scholar 

  9. Garcia D, Balart R, Crespo JE, Lopez J (2006) Mechanical properties of recycled pvc blends with styrenic polymers. J Appl Polym Sci 101:2464–2471

    Article  CAS  Google Scholar 

  10. Braun D (2001) PVC-Origin, growth, and future. J Vinyl Addit Technol 7:168–176

    Article  CAS  Google Scholar 

  11. Wenguang M, Mantia FP, La. (1996) Processing and mechanical properties of recycled PVC and of homopolymer blends with virgin PVC. J Appl Polym Sci 59:759–767

    Article  CAS  Google Scholar 

  12. Sadat-Shojai M, Bakhshandeh G-R (2011) Recycling of PVC wastes. Polym Degrad Stab 6:404–415

    Google Scholar 

  13. Burat F, Güney A, Kangal MO (2009) Selective separation of virgin and post consumer polymers (PET and PVC) by flotation method. Waste Manage 29:1807–1813

    Article  CAS  Google Scholar 

  14. Matuschek G, Milanov N, Kettrup A (2000) Thermoanalytical investigations for the recycling of PVC. Thermochim Acta 361:77–84

    Article  CAS  Google Scholar 

  15. Yarahmadi N, Jakubowicz I, Martinsson L (2003) PVC floorings as post consumer products for mechanical recycling and energy recovery. Polym Degrad Stab 79:439–448

    Article  CAS  Google Scholar 

  16. Limbachiya RR, Limbachiya VJ, Mehsana RRL (2014) A review of experimental investigation of twin screw extruder (TSE) machine for polyvinyl chloride (PVC) polymer material. Int J Eng Dev Res 2:1631–1634

    Google Scholar 

  17. Tahira BE, Khan MI, Saeed R, Akhwan S (2014) A review: thermal degradation and stabilization of poly(vinyl chloride). Int J Res 1:732–750

    Google Scholar 

  18. Krallis A, Kotoulas C, Papadopoulos S, Kiparissides C, Bousquet J, Bonardi C (2004) A comprehensive kinetic model for the free-radical polymerization of vinyl chloride in the presence of monofunctional and bifunctional initiators. Ind Eng Chem Res 43:6382–6399

    Article  CAS  Google Scholar 

  19. Braun D (2005) Controlled free-radical polymerization of vinyl chloride. J Vinyl Addit Technol 11:86–90

    Article  CAS  Google Scholar 

  20. Kricheldorf HR, Nuyken O, Swift G (1999) Handbook of polymer synthesis. CRC Press

    Google Scholar 

  21. Yousif E, Abdallh M, Hashim H, Salih N, Salimon J, Abdullah BM, Win Y-F (2013) Optical properties of pure and modified poly(vinyl chloride). Int J Ind Chem 4:1–8

    Article  Google Scholar 

  22. Borroso EG, Duarte FM, Couto M, Maia JM (2008) A rheological study of aging of emulsion and microsuspension based PVC plastisols. J Appl Polym Sci 109:664–673

    Article  CAS  Google Scholar 

  23. Rasteiro MG, Tomás A, Ferreira L, Figuredo S (2009) PVC paste rheology: study of process dependencies. J Appl Polym Sci 112:2809–2821

    Article  CAS  Google Scholar 

  24. Savrık SA, Balköse D, Ulutan S, Ülkü S (2010) Characterization of poly(vinyl chloride) powder produced by emulsion polymerization. J Thermal Anal Calorimtry 101:801–806

    Article  CAS  Google Scholar 

  25. Wheeler RN (1981) PoIy(vinyl chloride) processes and products. Environ Health Perspect 41:123–128

    Google Scholar 

  26. Unar IN, Soomro SA, Aziz S (2010) Effect of various additives on the physical properties of polyvinylchloride resin. Pak J Anal Environ Chem 11:44–50

    CAS  Google Scholar 

  27. Elgozali A, Hassan M (2008) Effect of additives on the mechanical properties of polyvinylchloride. J Sci Technol 9:1–12

    Google Scholar 

  28. Mersiowsky I (2002) Long-term fate of PVC products and their additives in landfills. Prog Polym Sci 27:2227–2277

    Article  CAS  Google Scholar 

  29. Jimenez A, Lopez J, Iannoni A, Kenny JM (2001) Formulation and mechanical characterization of PVC plastisols based on low-toxicity additives. J Appl Polym Sci 81:1881–1890

    Article  CAS  Google Scholar 

  30. Yousif E, Hasan A (2015) Photostabilization of poly(vinyl chloride)—still on the run. J Taibah Univ Sci 9:421–448

    Article  Google Scholar 

  31. Winzinger A (1996) Unique rheology control additive for PVC plastisols. Brighton

    Google Scholar 

  32. Wegmann A, Oertli AG, Voigt W (2002) New additive solutions for the PVC industry. In: Compounding polyvinyl chloride in the 21st century. Brookfield

    Google Scholar 

  33. Lee RE, Pearson K (2002) Stabilization of polyvinyl chloride against oxidation. In: Compounding polyvinyl chloride in the 21st century. Brookfield

    Google Scholar 

  34. Falter JA, Geick KS, Williams JB (1997) Anti-fog additives for extruded film. In: Polymers, laminations and coatings conference proceedings, Toronto

    Google Scholar 

  35. Patrick S (2004) PVC compounds and processing. Rapra Technol 176

    Google Scholar 

  36. Bahgat AA, Sayyah SM, Shalabi HS (1998) Electrical properties of pure PVC, in science and technology of polymers and advanced materials (Prasad PN, Kandil SH, Kafafi ZH (eds)). Springer, Boston, New York, pp 421–428

    Google Scholar 

  37. Mohan KR, Achari VBS, Rao VVRN, Sharma AK (2011) Electrical and optical properties of (PEMA/PVC) polymer blend electrolyte doped with NaClO4. Polym Test 30:881–886

    Article  CAS  Google Scholar 

  38. Hasan BA, Saeed MA, Hasan AA (2012) Optical properties of poly vinyl chloride PVC films irradiated with beta and gamma-rays. Brit J Sci 7:14–28

    Google Scholar 

  39. Aleshin AN, Mironkov NB, Suvorov AV, Conklin JA, Su TM, Kaner RB (1996) Transport properties of ion-implanted and chemically doped polyaniline films. Phys Rev B 54:11638–11643

    Article  CAS  Google Scholar 

  40. Ogura K, Saino T, Nakayama M, Shiigi H (1997) The humidity dependence of the electrical conductivity of a soluble polyaniline–poly(vinyl alcohol) composite film. J Mater Chem 7:2363–2366

    Google Scholar 

  41. Devi CU, Sharma AK, Rao VVRN (2002) Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films. Mater Lett 56:167–174

    Article  CAS  Google Scholar 

  42. Agarwal S, Sexena NS, Agrawal R, Saraswat VK (2013) Study of mechanical properties of polyvinyl chloride (PVC) and polystyrene (PS) polymers and their blends. AIP Conf Proc 1536:777–778

    Article  Google Scholar 

  43. Levchik SV, Weil ED (2005) Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polym Adv Technol 16:707–716

    Article  CAS  Google Scholar 

  44. Xu Q, Jin C, Zachar M, Majlingova A (2013) Test flammability of PVC wall panel with cone calorimetry. Procedia Eng 62:754–759

    Article  CAS  Google Scholar 

  45. Dickens ED (1983) The fire performance of PVC. J Vinyl Technol 5:150–157

    Google Scholar 

  46. Coaker AW (2004) Fire and flame retardants for PVC. J Vinyl Addit Technol 9:108–115

    Article  Google Scholar 

  47. Jasim MT, Nuawi MZ, Ziyad SS, Bahari AR (2014) Characterization of mechanical poperties using I-Kaz analysis method under steel ball excitation technique. J Appl Sci 14:3595–3603

    Article  Google Scholar 

  48. Fordham JWL (1959) Stereoregulated polymerization in the free propagating species. I. Theory J Polym Sci Part A Polym Chem 39:321–334

    Google Scholar 

  49. Gouinlock EV (1975) The fusion of highly crystalline poly(vinyl chloride). J Polym Sci Part B Polym Phys 13:1533–1542

    Article  CAS  Google Scholar 

  50. Terrailler FK-H (1969) Influence of the thermal prehistory on the properties of polyvinyl chloride. Macromol Phys Chem 127:1–33

    Google Scholar 

  51. Summers JW (1981) The nature of poly(vinyl chloride) crystallinity—the microdomain structure. J Vinyl Addit Technol 3:107–110

    Article  CAS  Google Scholar 

  52. Gouinlock EV (1975) Degrees of order from X-ray diffraction in highly crystalline poly(vinyl chloride). J Polym Sci Part B Polym Phys 13:961–970

    Article  CAS  Google Scholar 

  53. Ballard DGH, Burgess AN, Dekoninck JM, Roberts EA (1987) The ‘Crystallinity’ of PVC. Polymer 28:3–9

    Article  CAS  Google Scholar 

  54. Manson JA, Iobst SA, Acosta R (1972) Preparation of poly(vinyl chloride) at low temperature by a photochemical method. J Polym Sci Part A Polym Chem 10:179–186

    Article  CAS  Google Scholar 

  55. Soni PL, Geil PH, Collins EA (1981) Microdomain structure in plasticized PVC. J Macromol Sci Part B Phys 20:479–503

    Article  Google Scholar 

  56. Feldman D, Barbalata A (1996) Synthetic polymers: technology, properties, applications. Chapman & Hall, London, p 351

    Google Scholar 

  57. Jakubowicz I, Yarahmadi N, Gevert T (1999) Effects of accelerated and natural ageing on plasticized polyvinyl chloride (PVC). Polym Degrad Stab 66:415–421

    Article  CAS  Google Scholar 

  58. Roux G, Eurin PA (1981) Indentation test for predicting embrittlement of rigid PVC by weathering. J Macromol Sci Part B Phys 20:505–517

    Article  Google Scholar 

  59. Gardette J-L, Lemaire J (1993) Prediction of the long-term outdoor weathering of poly(vinyl chloride). J Vinyl Addit Technol 15:113–117

    Article  CAS  Google Scholar 

  60. Gardette J-L, Lemaire J (1997) Reversible discoloration effects in the photoaging of poly(vinyl chloride). J Vinyl Addit Technol 3:107–110

    Article  CAS  Google Scholar 

  61. Feldman D (2002) Polymer weathering: photo-oxidation. J Polym Environ 10:163–173

    CAS  Google Scholar 

  62. Minsker KS, Kolesov SV, Zaĭkov GE (1988) Degradation and stabilization of vinyl-chloridebased polymers. Pergamon Press, Oxford, p 508

    Google Scholar 

  63. Yagoubi N, Baillet A, Legendre B, Rabaron A, Ferrier D (1994) β-radiation effects on PVC materials: methodology for studying chemical modifications. J Appl Polym Sci 54:1043–1048

    Article  CAS  Google Scholar 

  64. Varshney L, Balan N, Choughule SV, Jothish PK, Krishnamurthy K (1996) Radiation degradation and frictional properties of gamma sterilized PVC (Copper-T). Radiat Phys Chem 47:649–651

    Article  CAS  Google Scholar 

  65. Chengyun Q, Qijian W, Guangcun M, Binsong C, Yunsheng Z (1993) Study on commercial radiation sterilization of PVC infusion sets. Radiat Phys Chem 42:591–593

    Article  Google Scholar 

  66. Swierz-Motysia B, Zimek Z, Bojarski J, Przybytniak G, Sadto J (1999) Radution effects in PVC and PVC compositions. Radiat Chem Phys Radiat Technol 31:54–56

    Google Scholar 

  67. Naimian F, Katbab AA, Nazokdast H (1994) Post-irradiation stability of polyvinyl chloride at sterilizing doses. Radiat Phys Chem 44:567–572

    Article  CAS  Google Scholar 

  68. Luther DW, Linsky LA (1996) Improving gamma radiation resistance: medical grade, flexible clear PVC compounds. J Vinyl Addit Technol 2:190–192

    Article  CAS  Google Scholar 

  69. Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manage 48:300–314

    Article  CAS  Google Scholar 

  70. Braun D (2004) PVC-origin, growth, and future. J Vinyl Addit Technol 7:168–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Maqsood Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.M., Gull, N., Khan, R.U., Butt, M.T.Z. (2022). Polyvinylchloride (PVC): Structure and Properties Relationship. In: P. M., V., Darie-Nita, R.N. (eds) Polyvinylchloride-based Blends. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-78455-3_2

Download citation

Publish with us

Policies and ethics