Skip to main content

Advertisement

Log in

Autophagy in acute brain injury

  • Review Article
  • Published:

From Nature Reviews Neuroscience

View current issue Sign up to alerts

Key Points

  • Autophagy is an evolutionarily old mechanism through which all eukaryotic cells, including neurons, remove supernumerary, ectopic or damaged cytoplasmic materials.

  • By favouring the re-establishment of cellular homeostasis, autophagy supports the survival of neurons exposed to specific forms of acute injury, such as methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage.

  • An autophagy-dependent form of cell death known as autosis contributes to the demise of neurons subjected to other forms of acute damage, such as neonatal hypoxia–ischaemia.

  • The actual impact of autophagic responses on the loss of neurons exposed to several other forms of acute damage (including adult stroke and traumatic brain injury) remains to be elucidated.

  • The limited specificity of pharmacological agents commonly used to manipulate autophagy and the lack of reliable biomarkers for ongoing autophagic responses in fixed samples underlie, at least in part, this gap in knowledge.

  • Additional investigations based on conditional-knockout models, refined pharmacological regimens and improved biomarkers of autophagy will clarify the actual role of autophagy in the neuronal response to various forms of acute injury.

Abstract

Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: General organization of autophagic responses.
Figure 2: Autophagy in the CNS.
Figure 3: Impact of autophagy on acute brain injury.

Similar content being viewed by others

References

  1. Kaur, J. & Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Li, W. W., Li, J. & Bao, J. K. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Lamb, C. A., Yoshimori, T. & Tooze, S. A. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759–774 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Galluzzi, L. et al. Autophagy in malignant transformation and cancer progression. EMBO J. 34, 856–880 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006). This study elegantly demonstrates that the neuron-specific loss of a component of the autophagic machinery (ATG7) in mice causes an accelerated neurodegenerative process associated with behavioural defects and early mortality.

    Article  CAS  PubMed  Google Scholar 

  7. Galluzzi, L., Pietrocola, F., Levine, B. & Kroemer, G. Metabolic control of autophagy. Cell 159, 1263–1276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Galluzzi, L., Bravo- San Pedro, J. M. & Kroemer, G. Organelle-specific initiation of cell death. Nat. Cell Biol. 16, 728–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Sica, V. et al. Organelle-specific initiation of autophagy. Mol. Cell 59, 522–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Menzies, F. M., Fleming, A. & Rubinsztein, D. C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 651–662 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013). This study is the first morphological and biochemical characterization of autosis, and the first demonstration of its pathophysiological relevance in the course of neonatal hypoxia–ischaemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Galluzzi, L. et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 22, 58–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Noda, N. N. & Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys. 44, 101–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Hoyer-Hansen, M. et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 25, 193–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011). These authors demonstrate a direct, MTORC1-independent connection between the regulator of autophagy, AMPK and one of the upstream components of the molecular machinery of autophagy, ULK1.

    Article  CAS  PubMed  Google Scholar 

  21. Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zalckvar, E. et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10, 285–292 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090–1106 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016). This report provides a comprehensive and detailed set of guidelines on how to select the most appropriate assays to monitor autophagic responses in vitro and in vivo , and on how to correctly interpret the results.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mehta, A., Prabhakar, M., Kumar, P., Deshmukh, R. & Sharma, P. L. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 698, 6–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10, 481–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Giorgi, F. S., Biagioni, F., Lenzi, P., Frati, A. & Fornai, F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J. Neural Transm. (Vienna) 122, 849–862 (2015).

    Article  Google Scholar 

  29. Stamoula, E. et al. Low dose administration of glutamate triggers a non-apoptotic, autophagic response in PC12 cells. Cell Physiol. Biochem. 37, 1750–1758 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur. J. Neurosci. 30, 2258–2270 (2009).

    Article  PubMed  Google Scholar 

  31. Borsello, T., Croquelois, K., Hornung, J. P. & Clarke, P. G. N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur. J. Neurosci. 18, 473–485 (2003).

    Article  PubMed  Google Scholar 

  32. Shacka, J. J. et al. Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci. Lett. 414, 57–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y. et al. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-d-aspartate receptor agonist kainic acid. Autophagy 4, 214–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, C. F. et al. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J. Pineal Res. 52, 312–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Kulbe, J. R., Mulcahy Levy, J. M., Coultrap, S. J., Thorburn, A. & Bayer, K. U. Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res. 1542, 12–19 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tian, J. et al. Protection of pyruvate against glutamate excitotoxicity is mediated by regulating DAPK1 protein complex. PLoS ONE 9, e95777 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Caldero, J. et al. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience 165, 1353–1369 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Fulceri, F. et al. Autophagy activation in glutamate-induced motor neuron loss. Arch. Ital. Biol. 149, 101–111 (2011).

    PubMed  Google Scholar 

  39. Perez-Carrion, M. D. et al. Dendrimer-mediated siRNA delivery knocks down Beclin 1 and potentiates NMDA-mediated toxicity in rat cortical neurons. J. Neurochem. 120, 259–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Perez-Carrion, M. D. & Cena, V. Knocking down HMGB1 using dendrimer-delivered siRNA unveils its key role in NMDA-induced autophagy in rat cortical neurons. Pharm. Res. 30, 2584–2595 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Yung, L. M. et al. Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke 43, 199–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Sheng, R. et al. Preconditioning stimuli induce autophagy via sphingosine kinase 2 in mouse cortical neurons. J. Biol. Chem. 289, 20845–20857 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Duran, J., Gruart, A., Garcia-Rocha, M., Delgado-Garcia, J. M. & Guinovart, J. J. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum. Mol. Genet. 23, 3147–3156 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Sumanont, Y. et al. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol. Pharm. Bull. 30, 1732–1739 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. McMahon, J. et al. Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J. Neurosci. 32, 15704–15714 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zeng, L. H., Xu, L., Gutmann, D. H. & Wong, M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann. Neurol. 63, 444–453 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhou, J. et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J. Neurosci. 29, 1773–1783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zeng, L. H. et al. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum. Mol. Genet. 20, 445–454 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Pun, R. Y. et al. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron 75, 1022–1034 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dong, X. X. et al. p53 mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience 207, 52–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sadasivan, S. et al. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci. 11, 21 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wang, Y. et al. IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K–AKT–mTOR pathway. J. Cell. Physiol. 229, 1618–1629 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Ginet, V. et al. Involvement of autophagy in hypoxic–excitotoxic neuronal death. Autophagy 10, 846–860 (2014). This study uses the stereotaxic intrastriatal delivery of a lentiviral vector encoding a Becn1 -specific shRNA to investigate the effect of autophagic responses in newborn rats subjected to severe hypoxia–ischaemia.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Baek, S. H. et al. Modulation of mitochondrial function and autophagy mediates carnosine neuroprotection against ischemic brain damage. Stroke 45, 2438–2443 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Martorell-Riera, A. et al. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death. EMBO J. 33, 2388–2407 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang, W. et al. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J. Biol. Chem. 290, 168–182 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Van Laar, V. S. et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol. Dis. 74, 180–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA 107, 4153–4158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, T. S. et al. The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress. Dis. Model. Mech. 3, 752–762 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Hou, Y. S. et al. Sestrin2 protects dopaminergic cells against rotenone toxicity through AMPK-dependent autophagy activation. Mol. Cell. Biol. 35, 2740–2751 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sai, Y. et al. 14-3-3 proteins in the regulation of rotenone-induced neurotoxicity might be via its isoform 14-3-3ɛ's involvement in autophagy. Cell. Mol. Neurobiol. 33, 1109–1121 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Filomeni, G. et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. Neurobiol. Aging 33, 767–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Pan, T. et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, Y. et al. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1α and induction of autophagy in SH-SY5Y cells. Neurochem. Int. 57, 198–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Liang, S., Figtree, G., Aiqun, M. & Ping, Z. GAPDH-knockdown reduce rotenone-induced H9C2 cells death via autophagy and anti-oxidative stress pathway. Toxicol. Lett. 234, 162–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Colell, A. et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129, 983–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, R. C. et al. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338, 956–959 (2012). These authors demonstrate that BECN1 can be directly phosphorylated by AKT1, resulting in suppressed autophagic responses upon the sequestration of BECN1 by 14-3-3 ɛ.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Su, L. Y. et al. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 11, 1745–1759 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nopparat, C., Porter, J. E., Ebadi, M. & Govitrapong, P. 1-Methyl-4-phenylpyridinium-induced cell death via autophagy through a Bcl-2/Beclin 1 complex-dependent pathway. Neurochem. Res. 39, 225–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, K., Shi, N., Sun, Y., Zhang, T. & Sun, X. Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem. Res. 38, 201–207 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Li, X. Z. et al. Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int. J. Neurosci. 123, 73–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Park, H. J., Shin, J. Y., Kim, H. N., Oh, S. H. & Lee, P. H. Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiol. Aging 35, 1920–1928 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Li, L. et al. Parkinson's disease involves autophagy and abnormal distribution of cathepsin L. Neurosci. Lett. 489, 62–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Gonzalez-Polo, R. A. et al. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol. Sci. 97, 448–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gonzalez-Polo, R. et al. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J. Neurochem. 109, 889–898 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Pan, T. et al. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol. Dis. 32, 16–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Guo, M. L. et al. Cocaine-mediated microglial activation involves the ER stress–autophagy axis. Autophagy 11, 995–1009 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cao, L. et al. Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and induces type II programmed cell death. Mol. Neurobiol. http://dx.doi.org/10.1007/s12035-015-9377-x (2015).

  79. Guha, P., Harraz, M. M. & Snyder, S. H. Cocaine elicits autophagic cytotoxicity via a nitric oxide–GAPDH signaling cascade. Proc. Natl Acad. Sci. USA 113, 1417–1422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sutton, L. P. & Caron, M. G. Essential role of D1R in the regulation of mTOR complex1 signaling induced by cocaine. Neuropharmacology 99, 610–619 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wu, J., McCallum, S. E., Glick, S. D. & Huang, Y. Inhibition of the mammalian target of rapamycin pathway by rapamycin blocks cocaine-induced locomotor sensitization. Neuroscience 172, 104–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Cubells, J. F., Rayport, S., Rajendran, G. & Sulzer, D. Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. J. Neurosci. 14, 2260–2271 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Castino, R. et al. Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J. Neurochem. 106, 1426–1439 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Pasquali, L. et al. Role of autophagy during methamphetamine neurotoxicity. Ann. NY Acad. Sci. 1139, 191–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Lenzi, P. et al. A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch. Ital. Biol. 150, 194–217 (2012).

    CAS  PubMed  Google Scholar 

  86. Lin, M. et al. Methamphetamine-induced neurotoxicity linked to ubiquitin–proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase Cδ in dopaminergic neuronal cells. Neuroscience 210, 308–332 (2012).

    Article  PubMed  CAS  Google Scholar 

  87. Ma, J. et al. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis. 5, e1099 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sinchai, T. et al. Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo. Neurosci. Lett. 502, 65–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Pitaksalee, R. et al. Autophagy inhibition by caffeine increases toxicity of methamphetamine in SH-SY5Y neuroblastoma cell line. Neurotox. Res. 27, 421–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Moon, J. H. et al. Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy. Int. J. Mol. Med. 34, 553–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Sanchez, A. B. et al. Antiretrovirals, methamphetamine, and HIV-1 envelope protein gp120 compromise neuronal energy homeostasis in association with various degrees of synaptic and neuritic damage. Antimicrob. Agents Chemother. 60, 168–179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Chandramani Shivalingappa, P., Jin, H., Anantharam, V., Kanthasamy, A. & Kanthasamy, A. N-acetyl cysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopaminergic cells. Parkinsons Dis. 2012, 424285 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Li, Y. et al. Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol. Lett. 215, 1–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Nopparat, C., Porter, J. E., Ebadi, M. & Govitrapong, P. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J. Pineal Res. 49, 382–389 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Li, I. H. et al. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced neurotoxicity in cultured cortical neurons. PLoS ONE 9, e116565 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen, G. et al. Autophagy is a protective response to ethanol neurotoxicity. Autophagy 8, 1577–1589 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang, H., Bower, K. A., Frank, J. A., Xu, M. & Luo, J. Hypoxic preconditioning alleviates ethanol neurotoxicity: the involvement of autophagy. Neurotox. Res. 24, 472–477 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Pla, A., Pascual, M., Renau-Piqueras, J. & Guerri, C. TLR4 mediates the impairment of ubiquitin–proteasome and autophagy–lysosome pathways induced by ethanol treatment in brain. Cell Death Dis. 5, e1066 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013). This is an exhaustive review of the molecular and cellular mechanisms whereby RCD can be perceived as immunogenic by the immune system and hence initiate an adaptive immune response.

    Article  CAS  PubMed  Google Scholar 

  100. Vucicevic, L. et al. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 10, 2362–2378 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Fabrizi, C. et al. Role of autophagy inhibitors and inducers in modulating the toxicity of trimethyltin in neuronal cell cultures. J. Neural Transm. (Vienna) 119, 1295–1305 (2012).

    Article  CAS  Google Scholar 

  102. Fabrizi, C. et al. Impairment of the autophagic flux in astrocytes intoxicated by trimethyltin. Neurotoxicology 52, 12–22 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Ginet, V. et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann. Neurol. 76, 695–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Xie, C. et al. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy 12, 410–423 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ginet, V., Puyal, J., Clarke, P. G. & Truttmann, A. C. Enhancement of autophagic flux after neonatal cerebral hypoxia–ischemia and its region-specific relationship to apoptotic mechanisms. Am. J. Pathol. 175, 1962–1974 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Koike, M. et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic–ischemic injury. Am. J. Pathol. 172, 454–469 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zhu, C. et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia–ischemia. Cell Death Differ. 12, 162–176 (2005). This study is the first to report the lipidation of LC3 in the brains of mice subjected to unilateral hypoxia–ischaemia.

    Article  CAS  PubMed  Google Scholar 

  108. Takada, S. H. et al. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory. Neuroscience 284, 247–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Carloni, S., Buonocore, G. & Balduini, W. Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury. Neurobiol. Dis. 32, 329–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Carloni, S., Buonocore, G., Longini, M., Proietti, F. & Balduini, W. Inhibition of rapamycin-induced autophagy causes necrotic cell death associated with Bax/Bad mitochondrial translocation. Neuroscience 203, 160–169 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Carloni, S. et al. Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia–ischemia. Autophagy 6, 366–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Li, H. et al. Lithium-mediated long-term neuroprotection in neonatal rat hypoxia–ischemia is associated with anti-inflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J. Cereb. Blood Flow Metab. 31, 2106–2115 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Li, Q. et al. Lithium reduces apoptosis and autophagy after neonatal hypoxia–ischemia. Cell Death Dis. 1, e56 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Shi, R. et al. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther. 18, 250–260 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lu, Q., Harris, V. A., Kumar, S., Mansour, H. M. & Black, S. M. Autophagy in neonatal hypoxia ischemic brain is associated with oxidative stress. Redox Biol. 6, 516–523 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Puyal, J., Vaslin, A., Mottier, V. & Clarke, P. G. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann. Neurol. 66, 378–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Shi, R. Y. et al. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci. Ther. 20, 1045–1055 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. De Angelis, C. & Haupert, G. T. Hypoxia triggers release of an endogenous inhibitor of Na+-K+-ATPase from midbrain and adrenal. Am. J. Physiol. 274, F182–F188 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Li, W. L. et al. The regulatory role of NF-κB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience 244, 16–30 (2013).

    Article  PubMed  CAS  Google Scholar 

  120. Liu, N., Shang, J., Tian, F., Nishi, H. & Abe, K. In vivo optical imaging for evaluating the efficacy of edaravone after transient cerebral ischemia in mice. Brain Res. 1397, 66–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Mehta, S. L. et al. Manganese superoxide dismutase deficiency exacerbates ischemic brain damage under hyperglycemic conditions by altering autophagy. Transl. Stroke Res. 2, 42–50 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Li, L. et al. Transmembrane protein 166 regulates autophagic and apoptotic activities following focal cerebral ischemic injury in rats. Exp. Neurol. 234, 181–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Wen, Y. D. et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4, 762–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Xin, X. Y. et al. 2-Methoxyestradiol attenuates autophagy activation after global ischemia. Can. J. Neurol. Sci. 38, 631–638 (2011).

    Article  PubMed  Google Scholar 

  125. Liu, L. et al. β-asarone attenuates ischemia–reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. Eur. J. Pharmacol. 680, 34–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Shang, J. et al. Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J. Neurosci. Res. 88, 2197–2206 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Zheng, Y. et al. Inhibition of autophagy contributes to melatonin-mediated neuroprotection against transient focal cerebral ischemia in rats. J. Pharmacol. Sci. 124, 354–364 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Qin, A. P. et al. Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6, 738–753 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Cui, D. R. et al. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience 246, 117–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Zhou, H. et al. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J. Neurosci. 34, 2967–2978 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Dohi, E. et al. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem. Int. 60, 431–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Sheng, R. et al. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy 6, 482–494 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Jiang, T. et al. Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br. J. Pharmacol. 171, 3146–3157 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Wang, P. et al. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8, 77–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Sheng, R. et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 8, 310–325 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Fan, J. et al. Ischemic preconditioning enhances autophagy but suppresses autophagic cell death in rat spinal neurons following ischemia–reperfusion. Brain Res. 1562, 76–86 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Yan, W. et al. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 1402, 109–121 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Gao, B. et al. The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning. Acta Pharmacol. Sin. 34, 657–666 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jiang, T. et al. Ischemic preconditioning provides neuroprotection by induction of AMP-activated protein kinase-dependent autophagy in a rat model of ischemic stroke. Mol. Neurobiol. 51, 220–229 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Jiang, Z. et al. The effects of methylene blue on autophagy and apoptosis in MRI-defined normal tissue, ischemic penumbra and ischemic core. PLoS ONE 10, e0131929 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Zhao, G., Zhang, W., Li, L., Wu, S. & Du, G. Pinocembrin protects the brain against ischemia–reperfusion injury and reverses the autophagy dysfunction in the penumbra area. Molecules 19, 15786–15798 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Wang, P. et al. ARRB1/β-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy 10, 1535–1548 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Papadakis, M. et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat. Med. 19, 351–357 (2013). These authors elegantly demonstrate that the inhibition of autophagy by the stereotaxic delivery of a lentiviral vector encoding a Tsc1 -targeting shRNA aggravates the neurotoxicity of tMCAO in adult rats.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wang, P. et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann. Neurol. 69, 360–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, X. et al. Cerebral ischemia–reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9, 1321–1333 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, X. et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy 10, 1801–1813 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Su, J., Zhang, T., Wang, K., Zhu, T. & Li, X. Autophagy activation contributes to the neuroprotection of remote ischemic perconditioning against focal cerebral ischemia in rats. Neurochem. Res. 39, 2068–2077 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Zhou, X. et al. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 411, 271–275 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Buckley, K. M. et al. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp. Transl Stroke Med. 6, 8 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Zheng, C. et al. NAD+ administration decreases ischemic brain damage partially by blocking autophagy in a mouse model of brain ischemia. Neurosci. Lett. 512, 67–71 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Kubota, C. et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J. Biol. Chem. 285, 667–674 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Zheng, Y. Q., Liu, J. X., Li, X. Z., Xu, L. & Xu, Y. G. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol. Sin. 30, 919–927 (2009). This work demonstrates that a lentiviral vector encoding a Becn1 -specific shRNA stereotaxically injected into the ipsilateral lateral ventricle decreases infarct volume, histological injury and neurological deficits in adult rats subjected to tMCAO.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Clark, R. S. et al. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 4, 88–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Sarkar, C. et al. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10, 2208–2222 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, C. L., Chen, S., Dietrich, D. & Hu, B. R. Changes in autophagy after traumatic brain injury. J. Cereb. Blood Flow Metab. 28, 674–683 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Diskin, T. et al. Closed head injury induces upregulation of Beclin 1 at the cortical site of injury. J. Neurotrauma 22, 750–762 (2005).

    Article  PubMed  Google Scholar 

  157. Park, Y. et al. Chaperone-mediated autophagy after traumatic brain injury. J. Neurotrauma 32, 1449–1457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kanno, H., Ozawa, H., Sekiguchi, A. & Itoi, E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol. Dis. 33, 143–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Liu, S. et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 6, e1582 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Chen, S., Wu, H., Tang, J., Zhang, J. & Zhang, J. H. Neurovascular events after subarachnoid hemorrhage: focusing on subcellular organelles. Acta Neurochir. Suppl. 120, 39–46 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Wang, Z. Y., Liu, W. G., Muharram, A., Wu, Z. Y. & Lin, J. H. Neuroprotective effects of autophagy induced by rapamycin in rat acute spinal cord injury model. Neuroimmunomodulation 21, 257–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Goldshmit, Y. et al. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol. Cell Neurosci. 68, 82–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, H. et al. VEGF inhibits the inflammation in spinal cord injury through activation of autophagy. Biochem. Biophys. Res. Commun. 464, 453–458 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Zhou, Y. et al. Retinoic acid prevents disruption of blood–spinal cord barrier by inducing autophagic flux after spinal cord injury. Neurochem. Res. 41, 813–825 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Gao, K. et al. Neuroprotective effect of simvastatin via inducing the autophagy on spinal cord injury in the rat model. Biomed. Res. Int. 2015, 260161 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Zhou, K. L. et al. Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury. Sci. Rep. 5, 17130 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Wang, Z. Y., Lin, J. H., Muharram, A. & Liu, W. G. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis. Apoptosis 19, 933–945 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Jing, C. H. et al. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213, 144–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, Y. et al. Induction of autophagy by cystatin C: a potential mechanism for prevention of cerebral vasospasm after experimental subarachnoid hemorrhage. Eur. J. Med. Res. 18, 21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Zhao, H. et al. Role of autophagy in early brain injury after subarachnoid hemorrhage in rats. Mol. Biol. Rep. 40, 819–827 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Chen, J. et al. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res. 56, 12–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Shao, A. et al. Enhancement of autophagy by histone deacetylase inhibitor trichostatin A ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol. Neurobiol. 53, 18–27 (2016). These authors provide robust pharmacological and genetic evidence supporting the ability of autophagy to limit neuronal loss following hemicerebellectomy.

    Article  CAS  PubMed  Google Scholar 

  173. Viscomi, M. T. et al. Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy 8, 222–235 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Erlich, S., Alexandrovich, A., Shohami, E. & Pinkas-Kramarski, R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26, 86–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Song, Q., Xie, D., Pan, S. & Xu, W. Rapamycin protects neurons from brain contusion-induced inflammatory reaction via modulation of microglial activation. Mol. Med. Rep. 12, 7203–7210 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Ding, K. et al. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem. Int. 91, 46–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  177. Zhao, M., Liang, F., Xu, H., Yan, W. & Zhang, J. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol. Med. Rep. 13, 13–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Xu, J. et al. Post-traumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation. Brain Res. 1582, 237–246 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Ma, L. et al. 17AAG improves histological and functional outcomes in a rat CCI model through autophagy activation and apoptosis attenuation. Neurosci. Lett. 599, 1–6 (2015).

    Article  CAS  PubMed  Google Scholar 

  180. Jin, Y., Lei, J., Lin, Y., Gao, G. Y. & Jiang, J. Y. Autophagy inhibitor 3-MA weakens neuroprotective effects of posttraumatic brain injury moderate hypothermia. World Neurosurg. 88, 433–446 (2016).

    Article  PubMed  Google Scholar 

  181. Cui, C. M. et al. Chloroquine exerts neuroprotection following traumatic brain injury via suppression of inflammation and neuronal autophagic death. Mol. Med. Rep. 12, 2323–2328 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Luo, C. L. et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184, 54–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Bao, H. J., Zhang, L., Han, W. C. & Dai, D. K. Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy. Neurochem. Res. 40, 89–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, M. et al. Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS ONE 9, e87241 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wang, Y. Q. et al. Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem. Res. 37, 1849–1858 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Cui, C. et al. Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury. Neurol. Sci. 35, 695–700 (2014).

    Article  PubMed  Google Scholar 

  187. Lai, Y. et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant γ-glutamylcysteinyl ethyl ester. J. Cereb. Blood Flow Metab. 28, 540–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Yao, J., Zheng, K. & Zhang, X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol. Med. Rep. 12, 6591–6597 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Subramani, S. & Malhotra, V. Non-autophagic roles of autophagy-related proteins. EMBO Rep. 14, 143–151 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Witcher, K. G., Eiferman, D. S. & Godbout, J. P. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci. 38, 609–620 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Lee, S. J., Silverman, E. & Bargman, J. M. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat. Rev. Nephrol. 7, 718–729 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014). This article provides a comprehensive review of the intricate crosstalk that exists between autophagy and various forms of RCD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Palikaras, K., Lionaki, E. & Tavernarakis, N. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Martins, I., Galluzzi, L. & Kroemer, G. Hormesis, cell death and aging. Aging (Albany NY) 3, 821–828 (2011).

    Article  CAS  Google Scholar 

  195. Madeo, F., Pietrocola, F., Eisenberg, T. & Kroemer, G. Caloric restriction mimetics: towards a molecular definition. Nat. Rev. Drug Discov. 13, 727–740 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Madeo, F., Tavernarakis, N. & Kroemer, G. Can autophagy promote longevity? Nat. Cell Biol. 12, 842–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007). This paper is one of the first to elegantly demonstrate the causal contribution of autophagy to the demise of salivary gland cells in developing Drosophila melanogaster larvae.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Menger, L. et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl Med. 4, 143ra199 (2012).

    Article  CAS  Google Scholar 

  200. Lin, M. H. & Akera, T. Increased (Na+,K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment. J. Biol. Chem. 253, 723–726 (1978).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.K. is supported by the following agencies and institutes: the French Ligue Contre le Cancer (Équipe Labellisée); the French Agence National de la Recherche (ANR) — Projets Blancs; the ANR under the framework of E-Rare-2 (the ERA-Net for Research on Rare Diseases); the French Association pour la Recherche sur le Cancer (ARC); Cancéropôle Ile-de-France; the French Institut National du Cancer (INCa); the Fondation Bettencourt Schueller; the Fondation de France; the French Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC (sites de recherche intégrée sur le cancer) Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); the Swiss Bridge Foundation; the Swiss Institute for Experimental Cancer Research (ISREC); and the Paris Alliance of Cancer Research Institutes (PACRI). K.B. is supported by the following agencies and institutes: the Swedish Research Council; the Swedish Childhood Cancer Foundation; the Swedish Cancer Foundation; the Swedish Brain Foundation; the Swedish Board of Radiation Safety; the Frimurare Barnhuset Foundation in Stockholm, Sweden; and governmental grants from the Swedish Agreement on Medical Education and Research (Avtal om läkarutbildning och forskning (ALF)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Galluzzi or Guido Kroemer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Pharmacological activation of autophagy for neuroprotection. (PDF 998 kb)

Supplementary information S2 (table)

Pharmacological inhibition of autophagy for neuroprotection. (PDF 721 kb)

PowerPoint slides

Glossary

Regulated cell death

(RCD). A form of cell death that depends on genetically encoded machinery. In contrast to its accidental counterpart, RCD can be retarded or accelerated via specific pharmacological or genetic interventions.

Autophagic adaptor

A protein that physically interacts with lipidated LC3 as well as with autophagic receptors, hence facilitating the sequestration of autophagic cargoes within forming autophagosomes.

Calpains

A family of Ca2+-dependent, non-lysosomal cysteine proteases involved in processes as diverse as long-term synaptic potentiation and regulated cell death.

Mitochondrial permeability transition

(MPT). An abrupt increase in the permeability of the inner mitochondrial membrane to small solutes, resulting in the dissipation of the mitochondrial transmembrane potential and structural breakdown of the organelle.

Ischaemic preconditioning

A hormetic process in which sublethal hypoxic challenges establish resistance to subsequent exposure to lethal hypoxia, and which is known to robustly activate autophagy.

Trimethyltin

A tin-containing organic compound with prominent neurotoxic activity towards the hippocampus.

Locomotor sensitization

Long-lasting exacerbation of a psychostimulant-induced locomotor response, elicited by the repeated intermittent administration of the same psychoactive agent.

Caspase 3

A cysteine protease that precipitates apoptotic variants of regulated cell death, irrespective of the subcellular compartment in which they are initiated.

Cardiac glycoside

A natural compound, such as digoxin or digitoxin, that exerts positive inotropic effects and suppresses autosis as it inhibits the plasma membrane Na+/K+ ATPase.

Metformin

An oral medication currently licensed for the treatment of specific forms of diabetes. Metformin activates AMP-activated protein kinase and inhibits respiratory complex I.

Thapsigargin

A natural compound that promotes endoplasmic reticulum stress by operating as a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase.

Tunicamycin

A mixture of homologous nucleoside antibiotics that induce endoplasmic reticulum stress by blocking N-linked glycosylation.

Ischaemic penumbra

Ischaemic tissue potentially destined to infarction but not irreversibly injured in the course of stroke. The ischaemic penumbra is the main target of acute therapeutic interventions in stroke patients.

17-Allylamino-demethoxygeldanamycin

(17-AAG). A derivative of geldanamycin that targets heat shock protein 90 kDa-α family class A member 1 (HSP90AA1; also known as HSP90).

Necroptosis

A specific type of regulated cell death that depends on the activity of receptor-interacting serine/threonine kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL).

Systemic lupus erythematosus

An autoimmune disease that has a complex aetiology, involves multiple organs, progresses in an unpredictable manner and is usually treated with systemic immunosuppressants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galluzzi, L., Bravo-San Pedro, J., Blomgren, K. et al. Autophagy in acute brain injury. Nat Rev Neurosci 17, 467–484 (2016). https://doi.org/10.1038/nrn.2016.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.51

  • Springer Nature Limited

This article is cited by

Navigation