Skip to main content

Autophagy Mechanisms for Brain Recovery. Keep It Clean, Keep It Alive

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Abstract

Most neurological pathologies that afflict humans are associated with the abnormal accumulation and aggregation of specific proteins into the cytoplasm and with mitochondrial dysfunction. Neuronal health is sustained by the fine regulation of protein synthesis and organelle biogenesis and their degradation to ensure efficient turnover. Autophagy is a powerful process for removing such proteins and for maintaining mitochondrial homeostasis. Thus, the autophagic activation may play important roles in neuronal cell survival and neuronal function under both physiological and pathological conditions. It is well accepted that the loss of basal autophagy or imbalance of autophagic flux leads to neuronal death. Autophagosomes accumulate abnormally in affected neurons of several neurodegenerative diseases such as AD, HD, PD, as well as in brain and spinal cord trauma. Thus, knowledge of cross-talk between autophagy impairment and pathophysiological mechanisms is a prerequisite for successful therapeutic interventions in neurological disorders. This chapter summarizes current understanding of how autophagy perturbations may affect neuronal function contributing to neurodegeneration in chronic and acute brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AVs:

Autophagic vacuoles

Atg:

Autophagy-related proteins

CNS:

Central nervous system

ER:

Endoplasmic reticulum

HCb:

Hemicerebellectomy

HD:

Huntington’s disease

Ko:

Knockout

mTOR:

Mammalian target of rapamycin

mTORC1:

MTOR complex 1

3-MA:

3-methyladenine

PD:

Parkinson’s disease

SCI:

Spinal cord injury

SVZ:

Subventricular zone

TBI:

Traumatic brain injury

References

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block F, Dihne M, Loos M. Inflammation in areas of remote changes following focal brain lesion. Prog Neurobiol. 2005;75(5):342–65.

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, et al. Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res. 2012;90(6):1105–18.

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Chen G, He W, Xiao M, Yan LJ. Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr Dis Treat. 2015;11:1015–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22.

    Article  PubMed  Google Scholar 

  • Cavallarin N, Vicario M, Negro A. The role of phosphorylation in synucleinopathies: focus on Parkinson’s disease. CNS Neurol Disord: Drug Targets. 2010;9(4):471–81.

    Article  CAS  Google Scholar 

  • Chu CT. Autophagic stress in neuronal injury and disease. J Neuropat Exp Neurol. 2006;65(5):423–32.

    Article  Google Scholar 

  • Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008;4(1):88–90.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990;181(3):195–213.

    Article  CAS  Google Scholar 

  • Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RL, Przedborski S. Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci. 2013;55:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010;22(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007;26(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  • Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447(7148):1121–5.

    Article  CAS  PubMed  Google Scholar 

  • Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):94–108.

    Article  CAS  PubMed  Google Scholar 

  • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298–302.

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Mizushima N. Regulators of mammalian cellular autophagy. Tanpakushitsu kakusan koso Protein, nucleic acid, enzyme. 2006;51(10 Suppl):1484–9.

    CAS  PubMed  Google Scholar 

  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009;11(12):1433–7.

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53.

    Article  PubMed  Google Scholar 

  • Juhasz G, Erdi B, Sass M, Neufeld TP. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 2007;21(23):3061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO J. 2000;19(21):5720–8.

    Article  CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E. The role of autophagy in spinal cord injury. Autophagy. 2009a;5(3):390–2.

    Article  CAS  PubMed  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis. 2009b;33(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151(2):263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ. Autophagy. Curr Biol. 2005a;15(8):R282–3.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005b;118(Pt 1):7–18.

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5(4):539–45.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A. 2007;104(36):14489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab. 2008;28(3):540–50.

    Article  CAS  PubMed  Google Scholar 

  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59.

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–77.

    Article  CAS  PubMed  Google Scholar 

  • Liang JH, Jia JP. Dysfunctional autophagy in Alzheimer’s disease: pathogenic roles and therapeutic implications. Neurosci Bull. 2014;30(2):308–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling D, Salvaterra PM. A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy. 2009;5(5):738–40.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski MM, Wu J, Faden AI, Sarkar C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid Redox Signal. 2015;23(6):565–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic brain injury. J Cereb Blood Flow Metab. 2008;28(4):674–83.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, et al. Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis. 2015;6:e1582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36(12):2405–19.

    Article  CAS  PubMed  Google Scholar 

  • Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, et al. Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience. 2011;184:54–63.

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, et al. The crucial role of Atg5 in cortical neurogenesis during early brain development. Sci Reports. 2014;4:6010.

    CAS  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med. 2013;19(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  • Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS ONE. 2011;6(9):e25416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR. Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci. 2015;38(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  • McAllister TW. Neurobiological consequences of traumatic brain injury. Dialogues Clin Neurosci. 2011;13(3):287–300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ. 2005;12(Suppl 2):1535–41.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Ann Rev Nutr. 2007;27:19–40.

    Article  CAS  Google Scholar 

  • Mizushima N, Kuma A, Kobayashi Y,Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J Cell Sci. 2003;116:1679–88.

    Google Scholar 

  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395–98.

    Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458–67.

    Article  CAS  PubMed  Google Scholar 

  • Narendra DP, Youle RJ. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14(10):1929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120(Pt 23):4081–91.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis. 2011;43(1):38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropat Exp Neurol. 2005;64(2):113–22.

    Article  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 2007;128(5):931–46.

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet. 2002;11(9):1107–17.

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein DC, DiFiglia M, Heintz N, Nixon RA, Qin ZH, Ravikumar B, et al. Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy. 2005;1(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  • Saitoh T, Fujita N, Yoshimori T, Akira S. Autophagy and innate immunity. Tanpakushitsu kakusan koso protein, nucleic acid, enzyme. 2008;53(16 Suppl):2279–85.

    CAS  PubMed  Google Scholar 

  • Saitoh T, Naonobu F, Yoshimori T, Akira S. Regulation of inflammation by autophagy. Tanpakushitsu kakusan koso protein, nucleic acid, enzyme. 2009;54(8 Suppl):1119–24.

    CAS  PubMed  Google Scholar 

  • Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Transac. 2013;41(5):1103–30.

    Article  CAS  Google Scholar 

  • Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10(12):2208–22.

    Article  CAS  PubMed  Google Scholar 

  • Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma. 2012;29(5):946–56.

    Article  PubMed  Google Scholar 

  • Shaid S, Brandts CH, Serve H, Dikic I. Ubiquitination and selective autophagy. Cell Death Differ. 2013;20(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4(2):176–84.

    Article  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. Alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  • Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis. 2011;43(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  • Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008;19(11):4762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci. 2009;29(43):13578–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast Saccharomyces cerevisiae. FEBS letters. 2007;581(11):2156–61.

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83(5):1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellez-Nagel I, Johnson AB, Terry RD. Studies on brain biopsies of patients with Huntington’s chorea. J Neuropat Exp Neurol. 1974;33(2):308–32.

    Article  CAS  Google Scholar 

  • Thomas B. Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal. 2009;11(9):2077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999;24(4):833–846.

    Google Scholar 

  • Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004;18(5):541–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viscomi MT, D’Amelio M. The, “Janus-faced role” of autophagy in neuronal sickness: focus on neurodegeneration. Mol Neurobiol. 2012;46(2):513–21.

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol. 2014;50(2):368–89.

    Article  CAS  PubMed  Google Scholar 

  • Viscomi MT, D’Amelio M, Cavallucci V, Latini L, Bisicchia E, Nazio F, et al. Stimulation of autophagy by rapamycin protects neurons from remote degeneration after acute focal brain damage. Autophagy. 2012;8(2):222–35.

    Article  CAS  PubMed  Google Scholar 

  • Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378–83.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM. The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Bioch Bioph Acta. 2010;1804(8):1690–4.

    CAS  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4(5):295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci. 2013;37(12):1949–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol. 2007;9(10):1102–9.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kakuta S, T Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198(2):219–33.

    Google Scholar 

  • Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F. The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis. 2014;5:e1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature reviews Mol Cell Biol. 2011;12(1):9–14.

    Article  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, et al. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A. 2007;104(14):5842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XC, Yu JT, Jiang T, Tan L. Autophagy modulation for Alzheimer’s disease therapy. Mol Neurobiol. 2013;48(3):702–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Italian Ministry of Health (Ricerca Corrente—MM), by International Foundation for Research in Paraplegia (IFP) (M.T.V.) and by program Young Researchers of Italian Ministry of Health (GR10. 184; M.T.V. and GR11.026; MDA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Teresa Viscomi or Marcello D’Amelio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Viscomi, M.T. et al. (2017). Autophagy Mechanisms for Brain Recovery. Keep It Clean, Keep It Alive. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-52067-4_2

Download citation

Publish with us

Policies and ethics