Skip to main content

Advertisement

Log in

Potential drugs for the treatment of Alzheimer’s disease

  • Review
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

It is well known that amyloid precursor protein (APP), the enzyme β-secretase 1 (BACE1), cyclooxygenase 2 (COX-2), nicastrin (NCT), and hyperphosphorylated tau protein (p-tau) are closely related to the development of Alzheimer’s disease (AD). In addition, recent evidence shows that neuroinflammation also contributes to the pathogenesis of AD. Although the mechanism is not clearly known, such inflammation could alter the activity of the aforementioned molecules. Therefore, the use of anti-inflammatory agents could slow the progression of the disease. Nimesulide, resveratrol, and citalopram are three anti-inflammatory agents that could contribute to a decrease in neuroinflammation and consequently to a decrease in the overexpression of APP, BACE1, COX-2, NCT, and p-Tau, as they possess anti-inflammatory effects that could regulate the expression of APP, BACE1, COX-2, NCT, and p-Tau of potent pro-inflammatory markers indirectly involved in the expression of APP, BACE1, NCT, COX-2, and p-Tau; therefore, their use could be beneficial as preventive treatment as well as in the early stages of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

3,5,4′-Trihydroxy-trans-stilbene:

Resveratrol

AD:

Alzheimer’s disease

AICD:

APP intracellular domain

APH-1A/APH-1B:

Anterior pharyngeal deficiency 1A or 1B

APP:

Amyloid precursor protein

BACE1:

Enzyme β-secretase 1

COX-2:

Cyclooxygenase 2

CTFα:

C-terminal fragment alpha

CTFβ:

C-terminal beta

FDA:

Food and drug administration

GSK-3β:

Glycogen synthase kinase-3 beta

IFN-γ:

Interferon gamma

IL:

Interleukins

iNOS:

Inducible nitric oxide synthase

MMP9:

Matrix metallopeptidase 9

NADPH:

Nicotinamide adenine dinucleotide phosphate

NCT:

Nicastrin

NF-κβ:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NO:

Nitric oxide

NOX:

NADPH oxidase

NSAIDs:

Non-steroidal anti-inflammatory drugs

p-Tau:

Hyperphosphorylated Tau protein

PEN-2:

Presenilin enhancer 2

PGs:

Prostaglandins

PS1/PS2:

Presenilins

ROS:

Reactive oxygen species

sAPPα:

Soluble APPα peptide

sAPPβ:

Soluble APPβ

SSRIs:

Selective serotonin reuptake inhibitors

TGF-β:

Transforming growth factor beta

TLR4:

Toll-like receptors

TNF-α:

Tumour necrosis factor-alpha

WHO:

World health organization

References

  1. Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7 (F1000 Faculty Rev):1161.

    Article  Google Scholar 

  2. Barragán D, Parra A, Tejeiro J. Alzheimer’s disease. Medicine. 2019;12(74):4338–46 (in Spanish).

    Google Scholar 

  3. Guan PP, Liang YY, Cao LL, Yu X, Wang P. Cyclooxygenase-2 induced the β-amyloid protein deposition and neuronal apoptosis via upregulating the synthesis of prostaglandin E2 and 15-deoxy-Δ12,14-prostaglandin J2. Neurotherapeutics. 2019;16(4):1255–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu C, Gong WG, Wang YJ, Sun JJ, Zhou H, Zhang ZJ, et al. Escitalopram alleviates stress-induced Alzheimer’s disease-like tau pathologies and cognitive deficits by reducing hypothalamic-pituitary-adrenal axis reactivity and insulin/GSK-3β signal pathway activity. Neurobiol Aging. 2018;67:137–47.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Guan PP, Yu X, Guo YS, Zhang YJ, Wang ZY, et al. COX-2 metabolic products, the prostaglandin I2 and F, mediate the effects of TNF-α and Zn2+ in stimulating the phosphorylation of Tau. Oncotarget. 2017;8(59):99296–311.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23(10):1183–93.

    Article  CAS  PubMed  Google Scholar 

  7. Regen F, Hellmann-Regen J, Costantini E, Reale M. Neuroinflammation and Alzheimer’s disease: implications for microglial activation. Curr Alzheimer Res. 2017;14(11):1140–8.

    Article  PubMed  Google Scholar 

  8. Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer’s disease. Med Princ Pract. 2015;24(1):1–10.

    Article  PubMed  Google Scholar 

  9. Guan PP, Wang P. Integrated communications between cyclooxygenase-2 and Alzheimer’s disease. FASEB J. 2019;33(1):13–33.

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism. 2021;115: 154454.

    Article  CAS  PubMed  Google Scholar 

  11. Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18(5):281–98.

    Article  PubMed  Google Scholar 

  12. Hefter D, Ludewig S, Draguhn A, Korte M. Amyloid, APP, and electrical activity of the brain. Neuroscientist. 2020;26(3):231–51.

    Article  PubMed  Google Scholar 

  13. Caselli RJ, Knopman DS, Bu G. An agnostic reevaluation of the amyloid cascade hypothesis of Alzheimer’s disease pathogenesis: the role of APP homeostasis. Alzheimers Dement. 2020;16(11):1582–90.

    Article  PubMed  Google Scholar 

  14. Chen Y, Shi GW, Liang ZM, Sheng SY, Shi YS, Peng L, et al. Resveratrol improves cognition and decreases amyloid plaque formation in Tg6799 mice. Mol Med Rep. 2019;19(5):3783–90.

    CAS  PubMed  Google Scholar 

  15. Estrada AE. Role of beta amyloid peptide aggregation in Alzheimer’s disease. REB. 2017;36(1):2–11 (in Spanish).

    Google Scholar 

  16. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petit D, Hitzenberger M, Lismont S, Zoltowska KM, Ryan NS, Mercken M, et al. Extracellular interface between APP and nicastrin regulates Aβ length and response to γ-secretase modulators. EMBO J. 2019;38(12): e101494.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolfe MS. Substrate recognition and processing by γ-secretase. Biochim Biophys Acta Biomembr. 2020;1862(1): 183016.

    Article  CAS  PubMed  Google Scholar 

  19. Cai T, Tomita T. Structure-activity relationship of presenilin in γ-secretase-mediated intramembrane cleavage. Semin Cell Dev Biol. 2020;105:102–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kedia S, Mandal K, Netrakanti PR, Jose M, Sisodia SS, Nair D. Nanoscale organization of nicastrin, the substrate receptor of the γ-secretase complex, as independent molecular domains. Mol Brain. 2021;14(1):158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhong L, Dong-hai Q, Hong-ying L, Qing-feng L. Analysis of the nicastrin promoter rs10752637 polymorphism and its association with Alzheimer’s disease. Eur J Neurosci. 2009;30(9):1831–6.

    Article  PubMed  Google Scholar 

  22. Frew JW, Navrazhina K. In silico analysis of gamma-secretase-complex mutations in hidradenitis suppurativa demonstrates disease-specific substrate recognition and cleavage alterations. Front Med (Lausanne). 2019;6:206.

    Article  PubMed  Google Scholar 

  23. López DE, Ballaz SJ. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond neuroinflammation: neuronal homeostasis in memory and anxiety. Mol Neurobiol. 2020;57(12):5167–76.

    Article  PubMed  Google Scholar 

  24. Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET imaging of neuroinflammation targeting COX-2 enzyme. Molecules. 2021;26(11):3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niranjan R, Mishra KP, Thakur AK. Inhibition of cyclooxygenase-2 (COX-2) initiates autophagy and potentiates MPTP-induced autophagic cell death of human neuroblastoma cells, SH-SY5Y: an inside in the pathology of Parkinson’s disease. Mol Neurobiol. 2018;55(10):8038–50.

    Article  CAS  PubMed  Google Scholar 

  26. Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 2020;140(4):417–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: a pathological or physiological phenomenon. Acta Neuropathol Commun. 2021;9(1):149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here. Nat Rev Neurol. 2021;17(3):157–72.

    Article  PubMed  Google Scholar 

  29. Chami L, Buggia-Prévot V, Duplan E, Del Prete D, Delprete D, Chami M, et al. Nuclear factor-κB regulates βAPP and β- and γ-secretases differently at physiological and supraphysiological Aβ concentrations. J Biol Chem. 2012;287(29):24573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, et al. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med. 2020;19(3):1824–34.

    CAS  PubMed  Google Scholar 

  31. Sarlus H, Heneka MT. Microglia in Alzheimer’s disease. J Clin Invest. 2017;127(9):3240–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–20.

    Article  CAS  PubMed  Google Scholar 

  33. Alasmari F, Alshammari MA, Alasmari AF, Alanazi WA, Alhazzani K. Neuroinflammatory cytokines induce amyloid beta neurotoxicity through modulating amyloid precursor protein levels/metabolism. Biomed Res Int. 2018;2018:3087475.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chacón-Quintero MV, Pineda-López LG, Villegas-Lanau CA, Posada-Duque R, Cardona-Gómez GP. Beta-secretase 1 underlies reactive astrocytes and endothelial disruption in neurodegeneration. Front Cell Neurosci. 2021;15: 656832.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Choi JH, Han J, Theodoropoulos PC, Zhong X, Wang J, Medler D, et al. Essential requirement for nicastrin in marginal zone and B-1 B cell development. Proc Natl Acad Sci U S A. 2020;117(9):4894–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nadler Y, Alexandrovich A, Grigoriadis N, Hartmann T, Rao KS, Shohami E, et al. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia. 2008;56(5):552–67.

    Article  PubMed  Google Scholar 

  37. Mirzaei M, Pushpitha K, Deng L, Chitranshi N, Gupta V, Rajput R, et al. Upregulation of proteolytic pathways and altered protein biosynthesis underlie retinal pathology in a mouse model of Alzheimer’s disease. Mol Neurobiol. 2019;56(9):6017–34.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu CH, Liou GG, Jiang YJ. Nicastrin deficiency induces tyrosinase-dependent depigmentation and skin inflammation. J Invest Dermatol. 2020;140(2):404-414.e13.

    Article  CAS  PubMed  Google Scholar 

  39. Lee TH, Liu PS, Tsai MM, Chen JL, Wang SJ, Hsieh HL. The COX-2-derived PGE2 autocrine contributes to bradykinin-induced matrix metalloproteinase-9 expression and astrocytic migration via STAT3 signaling. Cell Commun Signal. 2020;18(1):185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naseri NN, Wang H, Guo J, Sharma M, Luo W. The complexity of tau in Alzheimer’s disease. Neurosci Lett. 2019;705:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: what’s going on. Eur J Pharmacol. 2019;848:105–11.

    Article  CAS  PubMed  Google Scholar 

  42. Azam F, Alabdullah NH, Ehmedat HM, Abulifa AR, Taban I, Upadhyayula S. NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: an investigation by docking, molecular dynamics, and DFT studies. J Biomol Struct Dyn. 2018;36(8):2099–117.

    Article  CAS  PubMed  Google Scholar 

  43. Aisen PS, Schmeidler J, Pasinetti GM. Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology. 2002;58(7):1050–4.

    Article  CAS  PubMed  Google Scholar 

  44. Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N, et al. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32(2):139–47.

    Article  PubMed  Google Scholar 

  45. Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, et al. Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol. 2017;54(4):2622–35.

    Article  CAS  PubMed  Google Scholar 

  46. Jia Y, Wang N, Liu X. Resveratrol and amyloid-beta: mechanistic insights. Nutrients. 2017;9(10):E1122.

    Article  Google Scholar 

  47. Gomes BAQ, Silva JPB, Romeiro CFR, Dos Santos SM, Rodrigues CA, Gonçalves PR, et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev. 2018;2018:8152373.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rao YL, Ganaraja B, Joy T, Pai MM, Ullal SD, Murlimanju BV. Neuroprotective effects of resveratrol in Alzheimer’s disease. Front Biosci (Elite Ed). 2020;12(1):139–49.

    Article  PubMed  Google Scholar 

  49. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. 2017;14(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu J, Li Z, Chen H, Xu X, Li Y, Gui Y. Neuroprotective effect of trans-resveratrol in mild to moderate Alzheimer disease: a randomized, double-blind trial. Neurol Ther. 2021;10(2):905–17.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tosatti JAG, Fontes AFDS, Caramelli P, Gomes KB. Effects of resveratrol supplementation on the cognitive function of patients with Alzheimer’s disease: a systematic review of randomized controlled trials. Drugs Aging. 2022;39(4):285–95.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou T, Wang J, Xin C, Kong L, Wang C. Effect of memantine combined with citalopram on cognition of BPSD and moderate Alzheimer’s disease: a clinical trial. Exp Ther Med. 2019;17(3):1625–30.

    CAS  PubMed  Google Scholar 

  54. Gong WG, Wang YJ, Zhou H, Li XL, Bai F, Ren QG, et al. Citalopram ameliorates synaptic plasticity deficits in different cognition-associated brain regions induced by social isolation in middle-aged rats. Mol Neurobiol. 2017;54(3):1927–38.

    Article  CAS  PubMed  Google Scholar 

  55. Oliveira LF, Camargos EF, Martini LLL, Machado FV, Novaes MRCG. Use of psychotropic agents to treat agitation and aggression in Brazilian patients with Alzheimer’s disease: a naturalistic and multicenter study. Psychiatry Res. 2021;295: 113591.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Yang C, Liu T, Liu L, Li F, Cai Y, et al. Citalopram restores short-term memory deficit and non-cognitive behaviors in APP/PS1 mice while halting the advance of Alzheimer’s disease-like pathology. Neuropharmacology. 2018;131:475–86.

    Article  CAS  PubMed  Google Scholar 

  57. Sheline YI, Snider BJ, Beer JC, Seok D, Fagan AM, Suckow RF, et al. Effect of escitalopram dose and treatment duration on CSF Aβ levels in healthy older adults: a controlled clinical trial. Neurology. 2020;95(19):e2658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cirrito JR, Wallace CE, Yan P, Davis TA, Gardiner WD, Doherty BM, et al. Effect of escitalopram on Aβ levels and plaque load in an Alzheimer mouse model. Neurology. 2020;95(19):e2666–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kubick N, Pajares M, Enache I, Manda G, Mickael ME. Repurposing zileuton as a depression drug using an AI and in vitro approach. Molecules. 2020;25(9):E2155.

    Article  Google Scholar 

  60. Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z, et al. Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA. 2014;311(7):682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nagata T, Shinagawa S, Nakajima S, Mimura M, Shigeta M. Association between neuropsychiatric improvement and neurocognitive change in Alzheimer’s disease: analysis of the CATIE-AD study. J Alzheimers Dis. 2018;66(1):139–48.

    Article  CAS  PubMed  Google Scholar 

  62. Ho T, Pollock BG, Mulsant BH, Schantz O, Devanand DP, Mintzer JE, et al. R- and S-citalopram concentrations have differential effects on neuropsychiatric scores in elders with dementia and agitation. Br J Clin Pharmacol. 2016;82(3):784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ju Hwang C, Choi DY, Park MH, Hong JT. NF-κB as a key mediator of brain inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2019;18(1):3–10.

    Article  PubMed  Google Scholar 

  64. Thawkar BS, Kaur G. Inhibitors of NF-κB and P2X7/NLRP3/caspase 1 pathway in microglia: novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol. 2019;326:62–74.

    Article  CAS  PubMed  Google Scholar 

  65. Sinyor B, Mineo J, Ochner C. Alzheimer’s disease, inflammation, and the role of antioxidants. J Alzheimers Dis Rep. 2020;4(1):175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simpson DSA, Oliver PL. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel). 2020;9(8):E743.

    Article  Google Scholar 

  67. He JH, Liu RP, Peng YM, Guo Q, Zhu LB, Lian YZ, et al. Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation. J Neuroinflammation. 2021;18(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem. 2019;72:87–9.

    Article  CAS  PubMed  Google Scholar 

  69. González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li Z, Moniruzzaman M, Dastgheyb RM, Yoo SW, Wang M, Hao H, et al. Astrocytes deliver CK1 to neurons via extracellular vesicles in response to inflammation promoting the translation and amyloidogenic processing of APP. J Extracell Vesicles. 2020;10(2): e12035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gomes FC, Mattos MF, Goloni-Bertollo EM, Pavarino ÉC. Alzheimer’s disease in the Down syndrome: an overview of genetics and molecular aspects. Neurol India. 2021;69(1):32–41.

    Article  PubMed  Google Scholar 

  72. Zhang T, Yu J, Wang G, Zhang R. Amyloid precursor protein binds with TNFRSF21 to induce neural inflammation in Alzheimer’s disease. Eur J Pharm Sci. 2021;157: 105598.

    Article  CAS  PubMed  Google Scholar 

  73. Shin SD, Shin A, Mayagoitia K, Siebold L, Rubini M, Wilson CG, et al. Loss of amyloid precursor protein exacerbates early inflammation in Niemann-Pick disease type C. J Neuroinflammation. 2019;16(1):269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spitzer P, Walter M, Göth C, Oberstein TJ, Linning P, Knölker HJ, et al. Pharmacological inhibition of amyloidogenic APP processing and knock-down of APP in primary human macrophages impairs the secretion of cytokines. Front Immunol. 2020;11:1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Millot P, San C, Bennana E, Porte B, Vignal N, Hugon J, et al. STAT3 inhibition protects against neuroinflammation and BACE1 upregulation induced by systemic inflammation. Immunol Lett. 2020;228:129–34.

    Article  CAS  PubMed  Google Scholar 

  76. Vossen ARJV, van der Zee HH, Prens EP. Hidradenitis suppurativa: a systematic review integrating inflammatory pathways into a cohesive pathogenic model. Front Immunol. 2018;9:2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeichi T, Matsumoto T, Nomura T, Takeda M, Niwa H, Kono M, et al. A novel NCSTN missense mutation in the signal peptide domain causes hidradenitis suppurativa, which has features characteristic of an autoinflammatory keratinization disease. Br J Dermatol. 2020;182(2):491–3.

    Article  CAS  PubMed  Google Scholar 

  78. Mukherjee DAR. Resveratrol attenuates Nitrosodiethylamine-induced liver injury in anti-inflammatory manner via regulating cyclooxygenase-2. J Food Biochem. 2018;42(5):21–5.

    Article  Google Scholar 

  79. Ching MM, Reader J, Fulton AM. Eicosanoids in cancer: prostaglandin E2 receptor 4 in cancer therapeutics and immunotherapy. Front Pharmacol. 2020;11:819.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Leimert KB, Verstraeten BSE, Messer A, Nemati R, Blackadar K, Fang X, et al. Cooperative effects of sequential PGF and IL-1β on IL-6 and COX-2 expression in human myometrial cells. Biol Reprod. 2019;100(5):1370–85.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vaz M, Domingues C, Trindade D, Barra C, Oliveira JM, Rosa IM, et al. IL-8 and MCP-1 Impact on tau phosphorylation and phosphatase activity. Curr Alzheimer Res. 2020;17(11):985–1000.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Zhao Y, Zhang J, Yang G. Mechanisms of NLRP3 inflammasome activation: its role in the treatment of Alzheimer’s disease. Neurochem Res. 2020;45(11):2560–72.

    Article  CAS  PubMed  Google Scholar 

  84. Cao LL, Guan PP, Liang YY, Huang XS, Wang P. Cyclooxygenase-2 is essential for mediating the effects of calcium ions on stimulating phosphorylation of tau at the sites of Ser 396 and Ser 404. J Alzheimers Dis. 2019;68(3):1095–111.

    Article  CAS  PubMed  Google Scholar 

  85. Martínez-Díaz JA, María Elena H-A, Rojas-Durán F, Herrera-Covarrubias D, García-Hernández L, Mestizo-Gutiérrez S, Aranda-Abreu G. Expression of proteins linked to Alzheimer’s disease in C6 rat glioma cells under the action of lipopolysaccharide (LPS), nimesulide, resveratrol and citalopram. Turk J Biochem. 2020;45(6):793–801.

    Article  Google Scholar 

  86. Andreakos E, Sacre SM, Smith C, Lundberg A, Kiriakidis S, Stonehouse T, et al. Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP. Blood. 2004;103(6):2229–37.

    Article  CAS  PubMed  Google Scholar 

  87. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6): a001651.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Niranjan R, Rajasekar N, Nath C, Shukla R. The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chem Biol Interact. 2012;200(2–3):73–83.

    Article  CAS  PubMed  Google Scholar 

  89. Temp FR, Marafiga JR, Milanesi LH, Duarte T, Rambo LM, Pillat MM, et al. Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol. 2017;810:15–25.

    Article  CAS  PubMed  Google Scholar 

  90. Polat EC, Bozkurt AS, Keskin Cimen F, Gulaboglu M, Altuner D. The investigation of the protective effects of nimesulide on experimental testicular ischemia-reperfusion injury in rats. Rev Int Androl. 2020;18(2):55–62.

    PubMed  Google Scholar 

  91. Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM. Escitalopram ameliorates cognitive impairment in D-galactose-injected ovariectomized rats: modulation of JNK, GSK-3β, and ERK signalling pathways. Sci Rep. 2019;9(1):10056.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Picón-Pagès P, Gutiérrez DA, Barranco-Almohalla A, Crepin G, Tajes M, Ill-Raga G, et al. Amyloid beta-peptide increases BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α. Oxid Med Cell Longev. 2020;2020:2739459.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Li W, Lu S, Ma Z. Modulation of the wound healing through noncoding RNA interplay and GSK-3β/NF-κB signaling interaction. Int J Genomics. 2021;2021:9709290.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Suleyman Z, Sener E, Kurt N, Comez M, Yapanoglu T. The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue. Ren Fail. 2015;37(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  95. Su S, Zhang P, Zhang Q, Yin Z. GSK-3β inhibitor induces expression of the TLR4/MyD88/NF-κB signaling pathway to protect against renal ischemia-reperfusion injury during rat kidney transplantation. Inflammation. 2019;42(6):2105–18.

    Article  CAS  PubMed  Google Scholar 

  96. Yoon JH, Lee N, Youn K, Jo MR, Kim HR, Lee DS, et al. Dieckol ameliorates Aβ production via PI3K/Akt/GSK-3β regulated APP processing in SweAPP N2a cell. Mar Drugs. 2021;19(3):152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang X, Xu Y, Yan M, Li W, Chen J, Chen T. Effect of nicastrin on hepatocellular carcinoma proliferation and apoptosis through PI3K/AKT signalling pathway modulation. Cancer Cell Int. 2020;20:91.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Qu F, Xu W, Deng Z, Xie Y, Tang J, Chen Z, et al. Fish c-Jun N-terminal kinase (JNK) pathway is involved in bacterial MDP-induced intestinal inflammation. Front Immunol. 2020;11:459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi XL, Yan N, Cui YJ, Liu ZP. A unique GSK-3β inhibitor B10 has a direct effect on Aβ, targets tau and metal dyshomeostasis, and promotes neuronal neurite outgrowth. Cells. 2020;9(3):E649.

    Article  Google Scholar 

  100. Ma Y, Wang J, Xu D, Chen Y, Han X. Chronic MC-LR exposure promoted Aβ and p-tau accumulation via regulating Akt/GSK-3β signal pathway. Sci Total Environ. 2021;794: 148732.

    Article  CAS  PubMed  Google Scholar 

  101. Qin W, Peng Y, Ksiezak-Reding H, Ho L, Stetka B, Lovati E, et al. Inhibition of cyclooxygenase as potential novel therapeutic strategy in N141I presenilin-2 familial Alzheimer’s disease. Mol Psychiatry. 2006;11(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  102. Mozolewski P, Moskot M, Jakóbkiewicz-Banecka J, Węgrzyn G, Bocheńska K, Banecki B, et al. Nonsteroidal anti-inflammatory drugs modulate cellular glycosaminoglycan synthesis by affecting EGFR and PI3K signaling pathways. Sci Rep. 2017;7:43154.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ashrafizadeh M, Taeb S, Haghi-Aminjan H, Afrashi S, Moloudi K, Musa AE, et al. Resveratrol as an enhancer of apoptosis in cancer: a mechanistic review. Anticancer Agents Med Chem. 2021;21(17):2327–36.

    Article  CAS  PubMed  Google Scholar 

  104. Malaguarnera L. Influence of resveratrol on the immune response. Nutrients. 2019;11(5):E946.

    Article  Google Scholar 

  105. Tsai MH, Hsu LF, Lee CW, Chiang YC, Lee MH, How JM, et al. Resveratrol inhibits urban particulate matter-induced COX-2/PGE2 release in human fibroblast-like synoviocytes via the inhibition of activation of NADPH oxidase/ROS/NF-κB. Int J Biochem Cell Biol. 2017;88:113–23.

    Article  CAS  PubMed  Google Scholar 

  106. Chiang MC, Nicol CJ, Cheng YC. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem Int. 2018;115:1–10.

    Article  CAS  PubMed  Google Scholar 

  107. Omraninava M, Razi B, Aslani S, Imani D, Jamialahmadi T, Sahebkar A. Effect of resveratrol on inflammatory cytokines: a meta-analysis of randomized controlled trials. Eur J Pharmacol. 2021;908: 174380.

    Article  CAS  PubMed  Google Scholar 

  108. Yi H, Zhang W, Cui ZM, Cui SY, Fan JB, Zhu XH, et al. Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway. J Orthop Surg Res. 2020;15(1):424.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li W, Hu S, Chen X, Shi J. The antioxidant resveratrol protects against chondrocyte apoptosis by regulating the COX-2/NF-κB pathway in created temporomandibular osteoarthritis. Biomed Res Int. 2021;2021:9978651.

    PubMed  PubMed Central  Google Scholar 

  110. Yu Z, Xu W, Wang H. Resveratrol treatment inhibits acute pharyngitis in the mice model through inhibition of PGE2/COX-2 expression. Saudi J Biol Sci. 2018;25(7):1468–72.

    Article  CAS  PubMed  Google Scholar 

  111. Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. Biol Trace Elem Res. 2022;200(12):5104–14.

    Article  CAS  PubMed  Google Scholar 

  112. Hsu HT, Tseng YT, Wong WJ, Liu CM, Lo YC. Resveratrol prevents nanoparticles-induced inflammation and oxidative stress via downregulation of PKC-α and NADPH oxidase in lung epithelial A549 cells. BMC Complement Altern Med. 2018;18(1):211.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jhang KA, Park JS, Kim HS, Chong YH. Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem. 2017;65(44):9626–34.

    Article  CAS  PubMed  Google Scholar 

  114. Shati AA, Alfaifi MY. Trans-resveratrol inhibits tau phosphorylation in the brains of control and cadmium chloride-treated rats by activating PP2A and PI3K/Akt induced-inhibition of GSK3β. Neurochem Res. 2019;44(2):357–73.

    Article  CAS  PubMed  Google Scholar 

  115. Ko SY, Ko HA, Chu KH, Shieh TM, Chi TC, Chen HI, et al. The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One. 2015;10(11): e0143345.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018;5(3):245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee YJ, Kim J. Resveratrol activates natural killer cells through Akt- and mTORC2-mediated c-Myb upregulation. Int J Mol Sci. 2020;21(24):E9575.

    Article  Google Scholar 

  118. Jo EH, Ahn JS, Mo JS, Yoon JH, Ann EJ, Baek HJ, et al. Akt1 phosphorylates nicastrin to regulate its protein stability and activity. J Neurochem. 2015;134(5):799–810.

    Article  CAS  PubMed  Google Scholar 

  119. Reddy AP, Yin X, Sawant N, Reddy PH. Protective effects of antidepressant citalopram against abnormal APP processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer’s disease. Hum Mol Genet. 2021;30(10):847–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Elsworthy RJ, Crowe JA, King MC, Dunleavy C, Fisher E, Ludlam A, et al. The effect of citalopram treatment on amyloid-β precursor protein processing and oxidative stress in human hNSC-derived neurons. Transl Psychiatry. 2022;12(1):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wei Z, Junhong G, Xiaoyuan N, Jie W, Zhaojun W, Meina W, et al. Citalopram ameliorates impairments in spatial memory and synaptic plasticity in female 3xTgAD mice. Biomed Res Int. 2017;2017:1238687.

    Article  PubMed  PubMed Central  Google Scholar 

  122. von Linstow CU, Waider J, Grebing M, Metaxas A, Lesch KP, Finsen B. Serotonin augmentation therapy by escitalopram has minimal effects on amyloid-β levels in early-stage Alzheimer’s-like disease in mice. Alzheimers Res Ther. 2017;9(1):74.

    Article  Google Scholar 

  123. Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: the role of serotonin in inflammation and immunity. Pharmacol Res. 2019;140:100–14.

    Article  CAS  PubMed  Google Scholar 

  124. Garabadu D, Reddy BC, Krishnamurthy S. Citalopram protects against cold-restraint stress-induced activation of brain-derived neurotrophic factor and expression of nuclear factor kappa-light-chain-enhancer of activated B cells in rats. J Mol Neurosci. 2015;55(2):355–66.

    Article  CAS  PubMed  Google Scholar 

  125. Wang T, Zheng R, Sun S. Drug repurposing: escitalopram attenuates acute lung injury by inhibiting the SIK2/ HDAC4/ NF-κB signaling cascade. Biochem Biophys Res Commun. 2022;599:1–8.

    Article  CAS  PubMed  Google Scholar 

  126. Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem. 2020;76(1):49–60.

    Article  PubMed  Google Scholar 

  127. Rummel C. Does hypothalamic serotonin govern septic inflammation via the splanchnic anti-inflammatory reflex. Brain Behav Immun. 2019;81:10–1.

    Article  PubMed  Google Scholar 

  128. Wang S, Chen H, Xie H. Immune regulatory effect of citalopram on microglial cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2013;29(12):1251–3.

    CAS  PubMed  Google Scholar 

  129. Hammouda MB, Ford AE, Liu Y, Zhang JY. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells. 2020;9(4):E857.

    Article  Google Scholar 

  130. Zheng J, Dai Q, Han K, Hong W, Jia D, Mo Y, et al. JNK-IN-8, a c-Jun N-terminal kinase inhibitor, improves functional recovery through suppressing neuroinflammation in ischemic stroke. J Cell Physiol. 2020;235(3):2792–9.

    Article  CAS  PubMed  Google Scholar 

  131. Wu H, Wei S, Huang Y, Chen L, Wang Y, Wu X, et al. Aβ monomer induces phosphorylation of tau at Ser-214 through β2AR-PKA-JNK signaling pathway. FASEB J. 2020;34(4):5092–105.

    Article  CAS  PubMed  Google Scholar 

  132. Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, et al. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement. 2022;18(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  133. Ren QG, Gong WG, Wang YJ, Zhou QD, Zhang ZJ. Citalopram attenuates tau hyperphosphorylation and spatial memory deficit induced by social isolation rearing in middle-aged rats. J Mol Neurosci. 2015;56(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  134. Wang YJ, Gong WG, Ren QG, Zhang ZJ. Escitalopram alleviates Alzheimer’s disease-type tau pathologies in the aged P301L tau transgenic mice. J Alzheimers Dis. 2020;77(2):807–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TGM-C: the main author of the manuscript. LIP-M, MEH-A, DH-C, FR-D: review and approval of the manuscript. GEA-A: review, approval, manuscript editor and corresponding author.

Corresponding author

Correspondence to Gonzalo Emiliano Aranda-Abreu.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero-Cosme, T.G., Pascual-Mathey, L.I., Hernández-Aguilar, M.E. et al. Potential drugs for the treatment of Alzheimer’s disease. Pharmacol. Rep 75, 544–559 (2023). https://doi.org/10.1007/s43440-023-00481-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43440-023-00481-5

Keywords

Navigation