Skip to main content

Advertisement

Log in

Improved photocatalytic degradation efficiency of methylene blue via MgAl2O4–graphene nanocomposite

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In the present work, Magnesium Aluminate (MgAl2O4) nanoparticles and MgAl2O4–graphene nanocomposites with various graphene weight percentages (1, 2, 3, 4, and 5%) were prepared via sol–gel and ultra-sonication methods, respectively. The formation of the spinel phase was confirmed through XRD analysis. Scanning Electron Microscopy was used to study the morphology of the MgAl2O4 nanoparticles and their anchoring on the graphene sheets. The FTIR analysis also confirmed the presence of tetrahedral and octahedral bands at 695 and 526 cm−1, respectively. For magnesium aluminate nanoparticles, the bandgap was calculated to be 5.4 eV, which decreases to 4.9 eV with 5% graphene loading on the MgAl2O4–graphene nanocomposites. For methylene blue dye, the degradation efficiency of the 5% MgAl2O4–graphene nanocomposites was also found to be higher (90%) as compared to the pristine MgAl2O4 nanoparticles (70%). This increase in efficiency depicts their enhanced photocatalytic activity and strongly suggests that the MgAl2O4–graphene nanocomposites could be a good candidate for industrial wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. N. Zhang, Y. Zhang, Y.J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012). https://doi.org/10.1039/c2nr31480k

    Article  CAS  Google Scholar 

  2. F. Wu, W. Duan, M. Li, H. Xu, Synthesis of MgFe2O4/reduced graphene oxide composite and its visible-light photocatalytic performance for organic pollution. Int. J. Photoenergy. (2018). https://doi.org/10.1155/2018/7082785

    Article  Google Scholar 

  3. W.C. Oh, M.R.U.D. Biswas, 3D shape of BiVO4-GO nanocomposite for excellent photocatalytic performance on standard and industrial dyes under visible light. J. Korean Ceram. Soc. 58, 662–671 (2021). https://doi.org/10.1007/s43207-021-00116-6

    Article  CAS  Google Scholar 

  4. S. Yadav, K. Shakya, A. Gupta, D. Singh, A.R. Chandran, A. VarayilAanappalli, K. Goyal, N. Rani, K. Saini, A review on degradation of organic dyes by using metal oxide semiconductors. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-20818-6

    Article  Google Scholar 

  5. Y. Zhao, G. Wang, L. Li, X. Dong, X. Zhang, Enhanced activation of peroxymonosulfate by nitrogen-doped graphene/TiO2 under photo-assistance for organic pollutants degradation: Insight into N doping mechanism. Chemosphere 244, 125526 (2020). https://doi.org/10.1016/j.chemosphere.2019.125526

    Article  CAS  Google Scholar 

  6. B.P. Nenavathu, S. Kandula, S. Verma, Visible-light-driven photocatalytic degradation of safranin-T dye using functionalized graphene oxide nanosheet (FGS)/ZnO nanocomposites. RSC Adv. 8, 19659–19667 (2018). https://doi.org/10.1039/c8ra02237b

    Article  CAS  Google Scholar 

  7. K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO 2 composites. Adv. Mater. 21, 2233–2239 (2009). https://doi.org/10.1002/adma.200802738

    Article  CAS  Google Scholar 

  8. S. Singh, S. Sharma, U. Manhas, I. Qadir, A.K. Atri, D. Singh, Different fuel-adopted combustion syntheses of nano-structured NiCrFeO4: a highly recyclable and versatile catalyst for reduction of nitroarenes at room temperature and photocatalytic degradation of various organic dyes in unitary and ternary solutions. ACS Omega. 7, 19853–19871 (2022). https://doi.org/10.1021/acsomega.2c01616

    Article  CAS  Google Scholar 

  9. C. Lavanya, R. Dhankar, S. Chhikara, S. Sheoran, Review article degradation of toxic dyes: a review. Int. J. Curr. Microbiol. Appl. Sci. 3, 189–199 (2014)

    CAS  Google Scholar 

  10. H. Hu, K. Ding, H. Yu, Y. He, M. Yang, W.C. Oh, Metastable h-WO3 nano-hemitubes: controllable synthesis and superior adsorption–photocatalysis–oxidation activity for high-concentrated MB. J. Korean Ceram. Soc. (2022). https://doi.org/10.1007/s43207-022-00211-2

    Article  Google Scholar 

  11. X. Zhang, K. Fu, Z. Su, Fabrication of 3D MoS2-TiO2@PAN electro-spun membrane for efficient and recyclable photocatalytic degradation of organic dyes. Mater. Sci. Eng. B. Solid-State. Mater. Adv. Technol. 269, 115179 (2021). https://doi.org/10.1016/j.mseb.2021.115179

    Article  CAS  Google Scholar 

  12. W. Lv, B. Liu, Q. Qiu, F. Wang, Z. Luo, P. Zhang, S. Wei, Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J. Alloys Compd. 479, 480–483 (2009). https://doi.org/10.1016/j.jallcom.2008.12.111

    Article  CAS  Google Scholar 

  13. V.B.R. Boppana, D.J. Doren, R.F. Lobo, A spinel oxynitride with visible-light photocatalytic activity. Chemsuschem 3, 814–817 (2010). https://doi.org/10.1002/cssc.201000036

    Article  CAS  Google Scholar 

  14. Z. Zhu, X. Li, Q. Zhao, H. Li, Y. Shen, G. Chen, Porous “ brick-like” NiFe2O4 nanocrystals loaded with Ag species towards effective degradation of toluene. Chem. Eng. J. 165, 64–70 (2010). https://doi.org/10.1016/j.cej.2010.08.060

    Article  CAS  Google Scholar 

  15. S.W. Cao, Y.J. Zhu, G.F. Cheng, Y.H. Huang, ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J. Hazard. Mater. 171, 431–435 (2009). https://doi.org/10.1016/j.jhazmat.2009.06.019

    Article  CAS  Google Scholar 

  16. D. Wang, Z. Zou, J. Ye, A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem. Phys. Lett. 373, 191–196 (2003). https://doi.org/10.1016/S0009-2614(03)00574-8

    Article  CAS  Google Scholar 

  17. A. Goyal, S. Bansal, S. Singhal, Facile reduction of nitrophenols: Comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrogen Energy. 39, 4895–4908 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050

    Article  CAS  Google Scholar 

  18. S. Kandula, P. Jeevanandam, Sun-light-driven photocatalytic activity by ZnO/Ag heteronanostructures synthesized via a facile thermal decomposition approach. RSC Adv. 5, 76150–76159 (2015). https://doi.org/10.1039/c5ra14179f

    Article  CAS  Google Scholar 

  19. M. Nemiwal, T.C. Zhang, D. Kumar, Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: strategies to improve photocatalytic activity. Sci. Total Environ. 767, 144896 (2021). https://doi.org/10.1016/j.scitotenv.2020.144896

    Article  CAS  Google Scholar 

  20. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 48, 2858 (2012). https://doi.org/10.1039/c2cc16434e

    Article  CAS  Google Scholar 

  21. A. Rahman, R. Jayaganthan, Study of photocatalyst magnesium aluminate spinel nanoparticles. J. Nanostructure Chem. 5, 147–151 (2015). https://doi.org/10.1007/s40097-014-0135-9

    Article  CAS  Google Scholar 

  22. N. Habibi, Y. Wang, H. Arandiyan, M. Rezaei, Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv. Powder Technol. 28, 1249–1257 (2017). https://doi.org/10.1016/j.apt.2017.02.012

    Article  CAS  Google Scholar 

  23. E.N. Alvar, M. Rezaei, Mesoporous nanocrystalline MgAl2O4 spinel and its applications as support for Ni catalyst in dry reforming. Scr. Mater. 61, 212–215 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.047

    Article  CAS  Google Scholar 

  24. C.E. Daza, J. Gallego, F. Mondragón, S. Moreno, R. Molina, High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel 89, 592–603 (2010). https://doi.org/10.1016/j.fuel.2009.10.010

    Article  CAS  Google Scholar 

  25. I.V. Beketov, A.I. Medvedev, O.M. Samatov, A.V. Spirina, K.I. Shabanova, Synthesis and luminescent properties of MgAl2O4: Eu nanopowders. J. Alloys Compd. 586, S472–S475 (2014). https://doi.org/10.1016/j.jallcom.2013.02.070

    Article  CAS  Google Scholar 

  26. C. Pǎcurariu, I. Lazǎu, Z. Ecsedi, R. Lazǎu, P. Barvinschi, G. Mǎrginean, New synthesis methods of MgAl2O4 spinel. J. Eur. Ceram. Soc. 27, 707–710 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.050

    Article  CAS  Google Scholar 

  27. A. Saberi, F. Golestani-Fard, H. Sarpoolaky, M. Willert-Porada, T. Gerdes, R. Simon, Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route. J. Alloys Compd. 462, 142–146 (2008). https://doi.org/10.1016/j.jallcom.2007.07.101

    Article  CAS  Google Scholar 

  28. P.V.M. Kutty, S. Dasgupta, Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method. Ceram. Int. 39, 7891–7894 (2013). https://doi.org/10.1016/j.ceramint.2013.03.050

    Article  CAS  Google Scholar 

  29. F. Soofivand, M. Salavati-Niasari, Co 3 O 4 /graphene nanocomposite: pre-graphenization synthesis and photocatalytic investigation of various magnetic nanostructures. RSC Adv. 5, 64346–64353 (2015). https://doi.org/10.1039/C5RA09504B

    Article  CAS  Google Scholar 

  30. E.N. Alvar, M. Rezaei, H.N. Alvar, Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol. 198, 275–278 (2010). https://doi.org/10.1016/j.powtec.2009.11.019

    Article  CAS  Google Scholar 

  31. S. Sanjabi, A. Obeydavi, Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method. J. Alloys Compd. 645, 535–540 (2015). https://doi.org/10.1016/j.jallcom.2015.05.107

    Article  CAS  Google Scholar 

  32. F. Tavakoli, M. Salavati-Niasari, A. Badiei, F. Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57 (2015). https://doi.org/10.1016/j.materresbull.2014.11.045

    Article  CAS  Google Scholar 

  33. G.C. Xie, L. Fanga, L.P. Peng, G.B. Liu, H.B. Ruan, F. Wu, C.Y. Kong, Effect of In-doping on the optical constants of ZnO thin films. Phys. Procedia. 32, 651–657 (2012). https://doi.org/10.1016/j.phpro.2012.03.614

    Article  CAS  Google Scholar 

  34. S.K. Sampath, D.G. Kanhere, R. Pandey, Electronic structure of spinel oxides: Zinc aluminate and zinc gallate. J. Phys. Condens. Matter. 11, 3635–3644 (1999). https://doi.org/10.1088/0953-8984/11/18/301

    Article  CAS  Google Scholar 

  35. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, G. Ding, TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int. J. Hydrogen Energy. 37, 2224–2230 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.004

    Article  CAS  Google Scholar 

  36. A. Arshad, J. Iqbal, M. Siddiq, M.U. Ali, A. Ali, H. Shabbir, U. Bin Nazeer, M.S. Saleem, Solar light triggered catalytic performance of graphene-CuO nanocomposite for waste water treatment. Ceram. Int. 43, 10654–10660 (2017). https://doi.org/10.1016/j.ceramint.2017.03.165

    Article  CAS  Google Scholar 

  37. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010). https://doi.org/10.1021/nn901221k

    Article  CAS  Google Scholar 

  38. G. Hu, B. Tang, Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. Mater. Chem. Phys. 138, 608–614 (2013). https://doi.org/10.1016/j.matchemphys.2012.12.027

    Article  CAS  Google Scholar 

  39. R. Mohammed, M.E.M. Ali, S.M. Abdel-Moniem, H.S. Ibrahim, Reusable and highly stable MoS2 nanosheets for photocatalytic, sonocatalytic and thermocatalytic degradation of organic dyes: comparative study. Nano-Struct. Nano-Objects. 31, 100900 (2022). https://doi.org/10.1016/j.nanoso.2022.100900

    Article  CAS  Google Scholar 

  40. H.T. Rauf, N. Yasmin, G. Ali, M.N. Ashiq, M. Safdar, M. Mirza, New insight in photocatalytic degradation of textile dyes over CeO2/Ce2S3 composite. Phys. B Condens. Matter. 632, 413760 (2022). https://doi.org/10.1016/j.physb.2022.413760

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge Higher Education Commission (HEC) Islamabad Pakistan, (Project no. 1326) for providing support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhan Javaid.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Research involving human participants and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A., Gul, I.H., Khan, M.Z. et al. Improved photocatalytic degradation efficiency of methylene blue via MgAl2O4–graphene nanocomposite. J. Korean Ceram. Soc. 60, 293–300 (2023). https://doi.org/10.1007/s43207-022-00263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00263-4

Keywords

Navigation