Skip to main content
Log in

Metastable h-WO3 nano-hemitubes: controllable synthesis and superior adsorption–photocatalysis–oxidation activity for high-concentrated MB

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Novel metastable h-WO3 nano-hemitubes have been controllably prepared on a large scale assisted by inorganic structure directing agent of (NH4)2C2O4 through a convenient and facile hydrothermal route. The chemical composition, morphology, crystal structure, surface area and optical property of as-obtained products were investigated using various characterization techniques. Interestingly, it was found that the introduction and the adding amount of (NH4)2C2O4 played an important role in the process of controlling the phase and morphology of WO3. An appropriate amount of (NH4)2C2O4 (10–14 mmol) was beneficial for inducing the formation of metastable h-WO3 nano-hemitubes. However, monoclinic m-WO3 square-shaped nanoplates were obtained by adding 2 mmol (NH4)2C2O4. The results of photoluminescence (PL) test demonstrated that h-WO3 nano-hemitubes has a lower recombination rate of photogenerated electron–hole pairs and a longer lifetime of photogenerated carriers. Due to the special structure, the prepared one-dimensional h-WO3 nano-hemitubes displayed very superior adsorption–photocatalysis–oxidation activity for removing MB from highly concentrated MB-containing wastewater, which was 6.1 times higher than that of two-dimensional monoclinic m-WO3 square-shaped nanoplates. The mechanism of adsorption–photocatalysis–oxidation degradation for MB on h-WO3 nano-hemitubes was simply proposed. The prepared h-WO3 nano-hemitubes may have a potential application in wastewater purification and environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Khan, A. Jalilov, K. Fujii, A. Qurashi, Quasi-1D aligned nanostructures for solar-driven water splitting applications: challenges, promises, and perspectives. Solar RRL. 5, 2000741 (2021). https://doi.org/10.1002/solr.202000741

    Article  CAS  Google Scholar 

  2. H.S. Han, W. Park, A. Sivanantharm, S.W. Hwang, S. Surendran, U. Sim, I.S. Cho, Facile fabrication of nanotubular heterostructure for enhanced photoelectrochemical performance. Ceram. Int. 47, 3972–3977 (2021). https://doi.org/10.1016/j.ceramint.2020.09.261

    Article  CAS  Google Scholar 

  3. L. Vichard, N.Y. Steiner, N. Zerhouni, D. Hissel, Hybrid fuel cell system degradation modeling methods: a comprehensive review. J. Powder Sour. 506, 230071 (2021). https://doi.org/10.1016/j.jpowsour.2021.230071

    Article  CAS  Google Scholar 

  4. D.K. Lee, S.J. Wee, K.J. Jang, M.K. Han, S. Surendran, S.Y. Cho, J.Y. Kim, S.K. Lee, U. Sim, 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J. Korean Chem. Soc. 58, 679–687 (2021). https://doi.org/10.1007/s43207-021-00142-4

    Article  CAS  Google Scholar 

  5. J.W. Fu, K. Liu, H.M. Li, J.H. Hu, M. Liu, Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environ. Chem. Lett. 20, 243–262 (2022). https://doi.org/10.1007/s10311-021-01335-3

    Article  CAS  Google Scholar 

  6. L. Yao, H. Yang, Z.S. Chen, M.Q. Qiu, B.W. Hu, X.X. Wang, Bismuth oychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273, 128576 (2021). https://doi.org/10.1016/j.chemosphere.2020.128576

    Article  CAS  Google Scholar 

  7. D. Vaya, P.K. Surolia, Semiconductor based photocatalytic degradation of pesticides: an overview. Environ. Technol. Inno. 20, 101128 (2020). https://doi.org/10.1016/j.eti.2020.101128

    Article  CAS  Google Scholar 

  8. Y.J. Li, H.R. Dong, L. Li, L. Tang, R. Tian, R. Li, J. Chen, Q.Q. Xie, Z.L. Jin, J.Y. Xiao, Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res. 192, 116850 (2021). https://doi.org/10.1016/j.watres.2021.116850

    Article  CAS  Google Scholar 

  9. G. Zeng, M.H. Duan, J. He, F.H. Ge, W.G. Wang, Sulfate doped graphitic carbon nitride with enhanced photocatalytic activity towards degradation of methylene blue. Mater. Lett. 309, 131310 (2022). https://doi.org/10.1016/j.matlet.2021.131310

    Article  CAS  Google Scholar 

  10. S. Balaji, Y. Djaoued, A.S. Albert, R. Bruening, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21, 3940–3948 (2011). https://doi.org/10.1039/C0JM03773G

    Article  CAS  Google Scholar 

  11. T. He, J. Yao, Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007). https://doi.org/10.1039/B709380B

    Article  CAS  Google Scholar 

  12. Martinez D. Sanchez, A. Martinez-de la Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A 398, 179–186 (2011). https://doi.org/10.1016/j.apcata.2011.03.034

    Article  CAS  Google Scholar 

  13. J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybride carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. 1, 9099–9106 (2013). https://doi.org/10.1039/C3TA11658A

    Article  CAS  Google Scholar 

  14. F. Zheng, J. Wang, W.B. Liu, J.M. Zhou, H. Li, Y. Yu, P.F. Hu, W. Yan, Y. Liu, R. Li, Q. Zhen, J.J. Zhang, Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors. Electrochim. Acta 334, 135641 (2020). https://doi.org/10.1016/j.electacta.2020.135641

    Article  CAS  Google Scholar 

  15. H.S. Han, W. Park, S.W. Hwang, H. Kim, Y. Sim, S. Surendran, U. Sim, I.S. Cho, (020)-Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. J. Catal. 389, 328–336 (2020). https://doi.org/10.1016/j.jcat.2020.06.012

    Article  CAS  Google Scholar 

  16. M. Hibino, W. Han, T. Kudo, Electrochemical lithium intercalation into a hexagonal WO3 framework and its structural change. Solid State Ion. 135, 61–69 (2000). https://doi.org/10.1016/S0167-2738(00)00332-5

    Article  CAS  Google Scholar 

  17. M.J. Liao, L. Su, Y.C. Deng, S. Xiong, R.D. Tang, Z.B. Wu, C.X. Ding, L.H. Ynag, D.X. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J. Mater. Sci. 56, 14416–14447 (2021). https://doi.org/10.1007/s10853-021-06202-8

    Article  CAS  Google Scholar 

  18. D.P. DePuccio, P. Botella, B. O’Rourte, C.C. Landry, Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. ACS Appl. Mater. Interfaces. 7, 1987–1996 (2015). https://doi.org/10.1021/am507806a

    Article  CAS  Google Scholar 

  19. J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets. Appl. Surf. Sci. 287, 270–275 (2013). https://doi.org/10.1016/j.apsusc.2013.09.139

    Article  CAS  Google Scholar 

  20. F. Wang, C.H. Li, J. Yu, Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Sep. Purif. Technol. 91, 103–107 (2012). https://doi.org/10.1016/j.seppur.2011.12.001

    Article  CAS  Google Scholar 

  21. T.M. Salama, M. Morsy, R.M.A. Shahba, S.H. Mohamed, M.M. Mohamed, Synthesis of graphene oxide interspersed in hexagonal WO3 nanorods for high-efficiency visible-light driven photocatalysis and NH3 gas sensing. Front. Chem. 7, 722 (2019). https://doi.org/10.3389/fchem.2019.00722

    Article  CAS  Google Scholar 

  22. X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctiobal Z-scheme heterojuncyion of WO3/g-C3N4. Appl. Surf. Sci. 405, 359–371 (2017). https://doi.org/10.1016/j.apsusc.2017.02.025

    Article  CAS  Google Scholar 

  23. D.F. Wu, X.X. Su, W.W. Guo, Enhanced photocatalytic degradation of methylene blue over hexagonal WO3/graphene under visiblr-light irradiation. Kinet. Catal. 58, 710–719 (2017). https://doi.org/10.1134/S0023158418010159

    Article  CAS  Google Scholar 

  24. Y.S. Li, M.R. Ti, Z.Q. Li, Y. Zhang, L. Wu, Y.J. He, Comparative study on the removal of different-type organic pollutants on three-dimensional hexagonal-tungsten trioxide/reduced graphene oxide nanorod arrays: adsorption and visible light photodegradation. J. Mater. Sci.-Mater. Electron. 32, 2268–2282 (2021). https://doi.org/10.1007/s10854-020-04991-3

    Article  CAS  Google Scholar 

  25. S. Nakakura, A.F. Arif, F.G. Rinaldi, T. Hirano, E. Tanabe, R. Balgis, T. Ogi, Direct synthesis of highly crystalline single-phase hexagonal tungsten oxide nanorods by spray pyrolysis. Adv. Powder Technol. 30, 6–12 (2019). https://doi.org/10.1016/j.apt.2018.09.040

    Article  CAS  Google Scholar 

  26. D. Zhang, Y. Fan, G.J. Li, Z.H. Ma, X.H. Wang, Z.X. Cheng, J.Q. Xu, Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sensor. Actuat. B-Chem. 293, 23–30 (2019). https://doi.org/10.1016/j.snb.2019.04.110

    Article  CAS  Google Scholar 

  27. Y.L. Wang, X.L. Wang, Y.H. Li, L.J. Fang, J.J. Zhao, X.L. Du, A.P. Chen, H.G. Yang, Controllable synthesis of hexagonal WO3 nanoplates for efficient visible-light-driven photocatalytic oxygen production. Chem.-Asian J. 12, 387–391 (2017). https://doi.org/10.1002/asia.201601471

    Article  CAS  Google Scholar 

  28. K. Huang, Q. Zhang, Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowires. Nano Energy 1, 172–175 (2012). https://doi.org/10.1016/j.nanoen.2011.08.005

    Article  CAS  Google Scholar 

  29. C. Lian, X.L. Xiao, Z. Chen, Y.X. Liu, E.Y. Zhao, D.S. Wang, C. Chen, Y.D. Li, Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 9, 435–441 (2016). https://doi.org/10.1007/s12274-015-0924-6

    Article  CAS  Google Scholar 

  30. X.G. San, Y.M. Lu, G.S. Wang, D. Meng, X.H. Gong, Q. Jin, In situ growth of WO3 nanotube arrays and their H2S gas sensing properties for reduced operating temperature. Mater. Lett. 271, 127716 (2020). https://doi.org/10.1016/j.matlet.2020.127716

    Article  CAS  Google Scholar 

  31. Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, J.N. Yao, Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B. 110, 23829–23836 (2006). https://doi.org/10.1021/jp065170y

    Article  CAS  Google Scholar 

  32. J.R.G. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov, L. Bergstrom, S. Parola, A. Pawlicka, WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions. Langmuir 30, 10487–10492 (2014). https://doi.org/10.1021/la5025907

    Article  CAS  Google Scholar 

  33. K. Huang, Q. Zhang, F. Yang, D.Y. He, Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 3, 281–287 (2010). https://doi.org/10.1007/s12274-010-1031-3

    Article  CAS  Google Scholar 

  34. I.M. Szilagyi, J. Madarasz, G. Pokol, P. Kiraly, G. Tarkanyi, S. Saukko, J. Mizsei, A.L. Toth, A. Szabo, K. Varga-Josepovitso, Stability and controlled composition of hexagonal WO3. Chem. Mater. 20, 4116–4125 (2008). https://doi.org/10.1021/cm800668x

    Article  CAS  Google Scholar 

  35. L. Chen, S. Lam, Q.H. Zeng, R. Amal, A.B. Yu, Effect of cation on the growth of hexagonal WO3 nanorods. J. Phys. Chem. C. 116, 11722–11727 (2012). https://doi.org/10.1021/jp301210q

    Article  CAS  Google Scholar 

  36. K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, H. Sugihara, Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal. B: Environ. 94, 150–157 (2010). https://doi.org/10.1016/j.apcatb.2009.11.003

    Article  CAS  Google Scholar 

  37. T. Tauc, T.A. Scott, The optical properties of solids. Phys. Today. 20, 105–106 (1967). https://doi.org/10.1063/1.3033945

    Article  Google Scholar 

  38. A. Sonia, Y. Djaoued, B. Subramanian, R. Jacques, M. Eric, B. Ralf, B. Achour, Synthesis and characterization of novel nanorod superstructures and twin octahedral morphologies of WO3 by hydrothermal treatment. Mater. Chem. Phys. 136, 80–89 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.034

    Article  CAS  Google Scholar 

  39. L.J. Zhang, S. Li, B.K. Liu, D.J. Wang, T.F. Xie, Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 4, 3724–3729 (2014). https://doi.org/10.1021/cs500794j

    Article  CAS  Google Scholar 

  40. Y.S. Fan, X.L. Xi, Y.S. Liu, Z.R. Nie, L.Y. Zhao, Q.H. Zhang, Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Met. 40, 1738–1745 (2021). https://doi.org/10.1007/s12598-020-01490-6

    Article  CAS  Google Scholar 

  41. S. Jeon, K. Yong, Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment. J. Mater. Chem. 20, 10146–10151 (2010). https://doi.org/10.1039/C0JM01644F

    Article  CAS  Google Scholar 

  42. M. Farjood, M.A. Zanjanchi, Template-free synthesis of mesoporous tungsten oxide nanostructures and its application in photocatalysis and adsorption reactions. ChemistrySelect 4, 3042–3046 (2019). https://doi.org/10.1002/slct.201804007

    Article  CAS  Google Scholar 

  43. A.H. Nethercot, Prediction of Fermi energies and photoelecctric thresholds based on electronegativity concepts. Phys. Rev. Lett. 33, 1088–1091 (1974). https://doi.org/10.1103/PhysRevLett.33.1088

    Article  CAS  Google Scholar 

  44. L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Recent advances in BiOX (X= Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ. Sci. 1, 90–112 (2014). https://doi.org/10.1039/C3EN00098B

    Article  CAS  Google Scholar 

  45. P.Y. Dong, G.H. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci. 4, 539–557 (2017). https://doi.org/10.1039/C6EN00478D

    Article  CAS  Google Scholar 

  46. D.Q. Bi, Y.M. Xu, Synergism between Fe2O3 and WO3 particles: photocatalytic activity enhancement and reaction mechanism. J. Mol. Catal. A 367, 103–107 (2013). https://doi.org/10.1016/j.molcata.2012.09.031

    Article  CAS  Google Scholar 

  47. R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780–7781 (2008). https://doi.org/10.1021/ja800835q

    Article  CAS  Google Scholar 

  48. D.Q. Bi, Y.M. Xu, Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2. Langmuir 27, 9359–9366 (2011). https://doi.org/10.1021/la2012793

    Article  CAS  Google Scholar 

  49. J. Pan, J. Liu, S. Zuo, U.A. Khan, Y. Yu, B. Li, Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity. Mater. Res. Bull. 103, 216–224 (2018). https://doi.org/10.1016/j.materresbull.2018.03.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Foundation of Anhui Province Key Laboratory of Advanced Building Materials (JZCL002KF), the Key Projects of Support Program for Outstanding Young Talents in Colleges and Universities of Anhui Province (gxyqZD2016151) and the Natural Science Foundation of Anhui Educational Committee (KJ2014ZD08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanmei Hu or Won-Chun Oh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Ding, K., Yu, H. et al. Metastable h-WO3 nano-hemitubes: controllable synthesis and superior adsorption–photocatalysis–oxidation activity for high-concentrated MB. J. Korean Ceram. Soc. 60, 227–237 (2023). https://doi.org/10.1007/s43207-022-00211-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00211-2

Keywords

Navigation