Skip to main content
Log in

Effect of LiBiO2 on low-temperature sintering of PZT-PZNN ceramics

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, the sintering characteristics of 0.69Pb(Zr0.47Ti0.53)O3-0.31Pb[(Zn0.4Ni0.6)1/3Nb2/3] (PZT-PZNN) ceramics after the addition of LiBiO2 were studied. This addition lowered the sintering temperature from 1150 to 900 °C. The crystal structure changed from tetragonal to rhombohedral as the additive content increased by 0.7%. The polarization of the sintered specimen was conducted at an electric field of 3 kV/mm. When 0.7 wt% of LiBiO2 was added and sintered at 900 °C, the piezoelectric constant (d33) was 602 pC/N; moreover, the electromechanical coupling coefficient (kP), sintered density, and Curie temperature (Tc) at 1 kHz were 66.3%, 7.99 g/cm3, and 252.8 °C, respectively. When 0.7 wt% of LiBiO2 was added, the PZT-PZNN ceramic showed an increased strain curve of 0.118% at 2 kV/mm. The interdiffusion between the copper (Cu) electrode and ceramic material was not observed in the scanning electron microscopy (SEM) results; thus, the possibility of manufacturing an actuator using a Cu electrode using a novel composition was confirmed. The actuator displacement with the voltage 400 V was 1.2 μm. The thickness of the multi-layered actuator was 1 mm. Through this, the possibility of manufacturing a multi-layered actuator with a Cu electrode was confirmed through the composition of 0.69PZT-0.31PZNN (LiBiO2 0.7 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.A. Randall, A. Kelnberger, G.Y. Yang, R.E. Eitel, T.R. Shrout, “High strain piezoelectric multilayer actuators—a material science and engineering challenge.” J. Electroceramics. 14, 177–191 (2005)

    Article  Google Scholar 

  2. L.D. Vuong, P.D. Gio, N.D.V. Quang, T.D. Hieu, T.P. Nam, “Development of 0.8Pb(Zr0.48Ti0.52)O3–0.2Pb [(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 ceramics for high-intensity ultrasound applications.” J. Electron. Mater. 47, 5944–5951 (2018)

    Article  CAS  Google Scholar 

  3. S.W. Kim, Y.J. Jeong, H.C. Lee, Effects of the mixing method and sintering temperature on the characteristics of PZNN-PZT piezoelectric ceramic materials. J. Kor. Powder Metall. Inst. 25(6), 487–493 (2018)

    Article  Google Scholar 

  4. M.P. Zheng, Y.D. Hou, H.Y. Ge, M.K. Zhu, H. Yan, Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN–0.8PZT ceramics. J. Eur. Ceram. Soc. 33(8), 1447–1456 (2013)

    Article  CAS  Google Scholar 

  5. X. Zeng, X. He, W. Cheng, X. Zheng, P. Qiu, Dielectric and ferroelectric properties of PZN–PZT ceramics with lanthanum doping. J. Alloys Compd. 485(1–2), 843–847 (2009)

    Article  CAS  Google Scholar 

  6. H. Li, Y. Zhang, J. Zhou, X. Zhang, H. Liu, J. Fang, Phase structure and electrical properties of xPZN–(1–x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 41(3), 4822–4828 (2015)

    Article  CAS  Google Scholar 

  7. L.D. Vuong, P.D. Gio, V.T.T. Kieu, Raman scattering spectra and dielectric relaxation behavior of PZT-PZN-PMnN ceramic. J. Chem. Mater. Res. 2(6), 48–55 (2014)

    Google Scholar 

  8. H. Jaffe, Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (1958)

    Article  CAS  Google Scholar 

  9. M.W. Lee et al., Low temperature sintering of PNN-PZT ceramics and its electrical properties. J. Korean. Inst. Electr. Electron. Mater. Eng. 21(12), 1077 (2008)

    Google Scholar 

  10. Y.C. Zhang, W.N. Ye, Z.Z. Yang, C.J. Lu, L. Xia, H, “Effect of excess Pb on formation of perovskite-type 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 powders synthesized through a sol–gel process.” J. Mater. Sci. Mater. Electron. 22, 91–95 (2011)

    Article  CAS  Google Scholar 

  11. N. Yoshida, K. Tanaka, Ag migration in Ag–As–S glasses induced by electron-beam irradiation. J. Non. Cryst. Solids 210(2–3), 119–129 (1997)

    Article  CAS  Google Scholar 

  12. X. Zhang, G. Jiang, D. Liu, B. Yang, W. Cao, Enhanced electric field induced strain in (1–x)((Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3)-xSrTiO3 ceramics. Ceram. Int. 44(11), 12869–12876 (2018)

    Article  CAS  Google Scholar 

  13. T. Hayashi, J. Tomizawa, T. Hasegawa, Y. Akiyama, Low-temperature fabrication of Pb(Ni1/3Nb2/3)O3–Pb(Zr0.3Ti0.7)O3 ceramics with LiBiO2 as a sintering aid. J. Eur. Ceram. Soc. 24(6), 1037–1039 (2004)

    Article  CAS  Google Scholar 

  14. G. Zhilun, L. Longtu, G. Suhua, Z. Xiaowen, Low-temperature sintering of lead-based piezoelectric ceramics. J. Am. Ceram. Soc. 72(3), 486–491 (1989)

    Article  Google Scholar 

  15. L. Wang, C. Mao, G. Wang, G. Du, R. Liang, X. Dong, Effect of CuO addition on the microstructure and electric properties of low-temperature sintered 0.25PMN–0.40PT–0.36PZ ceramics. J. Am. Ceram. Soc. 96(1), 24–27 (2013)

    Article  CAS  Google Scholar 

  16. Y. Zeng, F. Yao, G. Zhang, S. Liu, S. Jiang, Y. Yu, J. He, L. Zhang, J. Yi, Effects of Bi2O3–Li2CO3 additions on dielectric and pyroelectric properties of Mn doped Pb(Zr0.9Ti0.1)O3 thick films. Ceram. Int. 39(4), 3709–3714 (2013)

    Article  CAS  Google Scholar 

  17. K. Murakami, D. Mabuchi, T. Kurita, Y.N. Kaneko, Effects of adding various metal oxides on low-temperature sintered Pb(Zr, Ti)O3 ceramics. Jpn. J. Appl. Phys. 35, 5188 (1996)

    Article  CAS  Google Scholar 

  18. X.X. Wang, K. Murakami, O. Sugiyama, S. Kaneko, Piezoelectric properties, densification behavior and microstructural evolution of low temperature sintered PZT ceramics with sintering aids. J. Eur. Ceram. Soc. 21(10–11), 1367–1370 (2001)

    Article  CAS  Google Scholar 

  19. D.E. Wittmer, R.C. Buchanan, Low-temperature densification of lead zirconate-titanate with vanadium pentoxide additive. J. Am. Ceram. Soc. 64(8), 485–490 (1981)

    Article  CAS  Google Scholar 

  20. C.-H. Wang, C.-H. Wang, L.W. Long, 4PbO·B2O3-A new sintering agent for Pb(Zr, Ti)O3 ceramics. Jpn. J. Appl. Phys. 32, 3209 (1993)

    Article  CAS  Google Scholar 

  21. T. Hayashi, T. Inoue, Y. Akiyama, Low temperature sintering of PZT powders coated with Pb5Ge3O11 by sol–Gel method. J. Eur. Ceram. Soc. 19(6–7), 999–1002 (1999)

    Article  CAS  Google Scholar 

  22. A.K. Saha, D. Kumar, O. Parkash, A. Sen, H.S. Maiti, Effect of phosphorus addition on the sintering and dielectric properties of Pb(Zr0.52Ti0.48)O3. Mater. Res. Bull. 38(7), 1165–1174 (2003)

    Article  CAS  Google Scholar 

  23. C. Liang, F.P. Sun, C.A. Rogers, Coupled electro-mechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 8(4), 336–343 (1993)

    Google Scholar 

  24. I. Seo, Y. Cha, I. Kang, J. Choi, S. Nahm, T. Seung, J. Paik, High energy density piezoelectric ceramics for energy harvesting devices. J. Am. Ceram. Soc. 94(11), 3629–3631 (2011)

    Article  CAS  Google Scholar 

  25. Y. Cha, I. Seo, I. Kang, S. Shin, J. Choi, S. Nahm, T. Seung, J. Paik, Effect of the structural properties on the energy density of Pb(Zr0.47Ti0.53)O3-Pb[(Ni0.6Zn0.4)1/3Nb2/3]O3 ceramics. J. Appl. Phys. 110, 084111 (2011)

    Article  Google Scholar 

  26. B.S. Kim, J.H. Ji, J.H. Koh, Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications. Ceram. Int. 47(5), 6683–6690 (2021)

    Article  CAS  Google Scholar 

  27. O. Khamman, R. Yimnirun, S. Ananta, “Effect of niobate B-site precursors on phase formation and particle size of lead nickel niobate powders. J. Alloys Compd. 465(1–2), 522–526 (2008)

    Article  CAS  Google Scholar 

  28. S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, Dielectric properties of lead-magnesium niobate ceramics. J. Am. Ceram. Soc. 67(5), 311–314 (1984)

    Article  CAS  Google Scholar 

  29. T. Hayashi, T. Hasegawa, Y. Akiyama, Enhancement of piezoelectric properties of low-temperature-fabricated Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with LiBiO2 sintering aid by post-annealing process. Jpn. J. Appl. Phys. 43, 6683 (2004)

    Article  CAS  Google Scholar 

  30. Y.R. Wang, S.F. Wang, Liquid phase sintering of NiCuZn ferrite and its magnetic properties. Int. J. Inorg. Mater. 3(8), 1189–1192 (2001)

    Article  CAS  Google Scholar 

  31. S. Li, J. Fu, R. Zuo, Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceram. Int. 47(14), 0272–8842 (2021)

    Article  Google Scholar 

  32. G. Feng, H. Rongzi, L. Jiaji, L. Zhen, T. Chang-sheng, Effects of ZnO/Li2O codoping on microstructure and piezoelectric properties of low-temperature sintered PMN–PNN–PZT ceramics. Ceram. Int. 36(5), 1863–1869 (2009)

    Article  Google Scholar 

  33. Z. Du, C. Zhao, H. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, J. Fang, Effect of MnCO3 on the electrical properties of PZT-based piezoceramics sintered at low temperature. J. Alloys Compd. 801, 27–32 (2019)

    Article  CAS  Google Scholar 

  34. S.-Y. Cheng, Fu. Shen-Li, C.-C. Wei, Low-temperature sintering of PZT ceramics. Ceram. Int. 13(4), 223–231 (1987)

    Article  CAS  Google Scholar 

  35. C. Zhang, J.T. Wang, M.Q. Qian, T.P. Chen, I. Akujobi, R.E. Ferrell, Effect of Pb volatilization on dielectric properties of 0.77PbMg1/3(Nb0.9Ta0.1)2/3O3-0.23PbTiO3. J. Int. Modern. Phys. B. 17(18–20), 3738–3744 (2003)

    Article  CAS  Google Scholar 

  36. L.-X. He, C.-E. Li, Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci. 35, 2477–2480 (2000)

    Article  CAS  Google Scholar 

  37. R. Mazumder, A. Sen, ‘Ultra’-low-temperature sintering of PZT: a synergy of nano-powder synthesis and addition of a sintering aid. J. Eur. Ceram. Soc. 28(14), 2731–2737 (2008)

    Article  CAS  Google Scholar 

  38. H.T. Martirena, J.C. Burfoot, Grain-size effects on properties of some ferroelectric ceramics. J. Phys. C Solid State Phys. 7, 3182 (1974)

    Article  CAS  Google Scholar 

  39. S. Samanta, V. Sankaranarayanan, K. Sethupathi, Effect of successive Multiple doping of La, Nb and Fe on structure and lattice vibration of MPB PZT. Mater. Today Proc. 5(14), 27919–27927 (2018)

    Article  CAS  Google Scholar 

  40. M. Pereira, A.G. Peixoto, M.J.M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc 21(10–11), 1353–1356 (2001)

    Article  CAS  Google Scholar 

  41. R.H. Liang, W.Z. Zhang, M. Gao, L. Wang, X.L. Dong, Excellent electrostrictive properties of low temperature sintered PZT ceramics with high concentration LiBiO2 sintering aid. Ceram. Int. 39(1), 563–569 (2013)

    Article  CAS  Google Scholar 

  42. H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program (10077326, Development of piezoelectric multilayer actuator with base-metal internal electrode and its driving/ control circuit) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hun Yeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.C., Kim, S.Y., Yeo, DH. et al. Effect of LiBiO2 on low-temperature sintering of PZT-PZNN ceramics. J. Korean Ceram. Soc. 59, 638–646 (2022). https://doi.org/10.1007/s43207-022-00205-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-022-00205-0

Keywords

Navigation