Skip to main content
Log in

Development of 0.8Pb(Zr0.48Ti0.52)O3–0.2Pb [(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 Ceramics for High-Intensity Ultrasound Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The B-site oxide mixing technique has been used to fabricate 0.8Pb(Zr0.48 Ti0.52)O3–0.2Pb[(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 (PZT–PZMnN) + x wt.% ZnO nanoparticle ceramics, where x = 0.0, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45. The perovskite PZT–PZMnN + x wt.% ZnO solid solution was sintered at 950°C. Presence of tetragonal and rhombohedral phases in the sintered PZT–PZMnN + 0.35 wt.% ZnO compound at room temperature was confirmed by simultaneously investigating the structure, microstructure, and dielectric properties. The largest grain size was exhibited by the PZT–PZMnN +  0.35 wt.% ZnO nanoparticle ceramic near the morphotropic phase boundary. For this composition, small rhombohedral domains with 71° or 108° domain walls were observed around relatively large tetragonal domains with 180° and 90° domain walls. The width of these domains was found to be about 100 nm. The PZT–PZMnN ceramics exhibited the following optimal properties at this ZnO nanoparticle content of 0.35 wt.%: electromechanical coupling factors of kp of 0.60 and kt of 0.46, piezoelectric constant d31 of 130 pC N−1, mechanical quality factor Qm of 1280, high remanent polarization Pr of 30.4 μC cm−2, and low coercive field Ec of 6.2 kV cm−1, making it a promising material for use in high-intensity ultrasound applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Huang, J. Zeng, X. Ruan, L. Zheng, and G. Li, J. Am. Ceram. Soc. 101, 274–282 (2018).

    Article  Google Scholar 

  2. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J.S. Son, C.W. Ahn, and W. Jo, J. Materiomics 2, 1–24 (2016).

    Article  Google Scholar 

  3. P. Kour, S. Pradhan, P. Kumar, S. Sinha, and M. Kar, Mater. Today Proc. 4, 5727–5733 (2017).

    Article  Google Scholar 

  4. Y. Yue, Q. Zhang, R. Nie, P. Yu, Q. Chen, H. Liu, J. Zhu, D. Xiao, and H. Song, Mater. Res. Bull. 92, 123–128 (2017).

    Article  Google Scholar 

  5. M.A. Qaiser, A. Hussain, Y. Xu, Y. Wang, Y. Wang, Y. Yang, and G. Yuan, Chin. Phys. B 26, 037702 (2017).

    Article  Google Scholar 

  6. L. D. Vuong, P. D. Gio, N. T. Tho and T. V. Chuong, Indian J. Eng. Mater. Sci. 20 (2013) 555–560, (2013).

  7. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, Prog. Mater. Sci. 68, 1–66 (2015).

    Article  Google Scholar 

  8. Y. Yue, Q. Zhang, R. Nie, P. Yu, Q. Chen, H. Liu, J. Zhu, D. Xiao, and H. Song, Mater. Res. Bull. 92, 123–128 (2017).

    Article  Google Scholar 

  9. L.D. Vuong and P.D. Gio, J. Mod. Phys. 5, 1258–1263 (2014).

    Article  Google Scholar 

  10. L.D. Vuong, P.D. Gio, and V.T.T. Kieu, Int. J. Chem. Mater. Res. 2, 48–55 (2014).

    Google Scholar 

  11. F. Gao, L.-H. Cheng, R.-Z. Hong, J. Liu, C.-J. Wang, and C. Tian, Ceram. Int. 35, 1719–1723 (2009).

    Article  Google Scholar 

  12. C.-C. Tsai, S.-Y. Chu, C.-S. Hong, and S.-F. Chen, J. Eur. Ceram. Soc. 31, 2013–2022 (2011).

    Article  Google Scholar 

  13. L.D. Vuong and N.T. Tho, Int. J. Mater. Res. 108, 222–227 (2017).

    Article  Google Scholar 

  14. L.D. Vuong and N. Truong-Tho, J. Electron. Mater. 46, 6395–6402 (2017).

    Article  Google Scholar 

  15. J. Wang, G. Wang, H. Nie, X. Chen, F. Cao, X. Dong, Y. Gu, and H. He, J. Am. Ceram. Soc. 96, 2370–2373 (2013).

    Article  Google Scholar 

  16. S.H. Kang, C.W. Ahn, H.J. Lee, I.W. Kim, E.C. Park, and J.S. Lee, J. Electroceram. 21, 855–858 (2008).

    Article  Google Scholar 

  17. J. Yoo, I. Lee, D.S. Paik, and Y.-W. Park, J. Electroceram. 23, 519–523 (2009).

    Article  Google Scholar 

  18. Y.-J. Kim, J. Yoo, and J.-Y. Lee, Ferroelectr. Lett. Sect. 44, 1–7 (2017).

    Article  Google Scholar 

  19. C.W. Ahn, H.C. Song, S. Nahm, S. Priya, S.H. Park, K. Uchino, H.G. Lee, and H.J. Lee, J. Am. Ceram. Soc. 89, 921–925 (2006).

    Article  Google Scholar 

  20. M.-S. Yoon, Y.-M. Kim, S.-Y. Kweon, T.-W. Hong, Y.-G. Lee, S.-L. Ryu, I.-H. Kim, H.-J. Kim, and S.-C. Ur, J. Electroceram. 18, 73–75 (2007).

    Article  Google Scholar 

  21. J.-Y. Ha, J.-W. Choi, C.-Y. Kang, D.J. Choi, H.-J. Kim, and S.-J. Yoon, Mater. Chem. Phys. 90, 396–400 (2005).

    Article  Google Scholar 

  22. H.-B. Li, Y. Li, D.-W. Wang, R. Lu, J. Yuan, and M.-S. Cao, J. Mater. Sci.: Mater. Electron. 24, 1463–1468 (2013).

    Google Scholar 

  23. J. Yuan, D.-W. Wang, H.-B. Lin, Q.-L. Zhao, D.-Q. Zhang, and M.-S. Cao, J. Alloys Compd. 504, 123–128 (2010).

    Article  Google Scholar 

  24. M.-S. Cao, D.-W. Wang, J. Yuan, H.-B. Lin, Q.-L. Zhao, W.-L. Song, and D.-Q. Zhang, Mater. Lett. 64, 1798–1801 (2010).

    Article  Google Scholar 

  25. D.-W. Wang, M.-S. Cao, J. Yuan, H.-B. Lin, Q.-L. Zhao, and D.-Q. Zhang, Curr. Nanosci. 7, 227–234 (2011).

    Article  Google Scholar 

  26. D.-W. Wang, M.-S. Cao, J. Yuan, R. Lu, H.-B. Li, H.-B. Lin, Q.-L. Zhao, and D.-Q. Zhang, J. Alloys Compd. 509, 6980–6986 (2011).

    Article  Google Scholar 

  27. N. Dinh Tung Luan, L. D. Vuong, T. Van Chuong, and N. Truong Tho, Adv. Mater. Sci. Eng. 2014, (2014).

  28. D. A. Tuan, V. Tung, T. V. Chuong, N. T. Tinh, and N. T. M. Huong, Indian J. Pure Appl. Phys. (53) 409-415 (2015).

  29. R.M. German, Liquid Phase Sintering (Berlin: Springer, 2013).

    Google Scholar 

  30. C.Y. Luo, M.Z. Hu, Q. Huang, Y. Fu, and H.S. Gu, Key Eng. Mater. 512, 1184–1188 (2012).

    Article  Google Scholar 

  31. V. Izhevskyi, A. Bressiani, and J. Bressiani, J. Am. Ceram. Soc. 88, 1115–1121 (2005).

    Article  Google Scholar 

  32. L. Zhang, Q. Sun, W. Ma, Y. Zhang, and H. Liu, J. Mater. Sci.: Mater. Electron. 23, 688–691 (2012).

    Google Scholar 

  33. D. Alikin, A. Turygin, A. Kholkin, and V. Shur, Materials 10, 47 (2017).

    Article  Google Scholar 

  34. P.R. Potnis, N.-T. Tsou, and J.E. Huber, Materials 4, 417–447 (2011).

    Article  Google Scholar 

  35. X. Yuhuan, Ferroelectric Materials and Their Applications (New York: Elsevier, 1991).

    Google Scholar 

  36. N. Luo, Q. Li, and Z. Xia, Mater. Res. Bull. 46, 1333–1339 (2011).

    Article  Google Scholar 

  37. W. Hu, Experimental Search for High Curie Temperature Piezoelectric Ceramics with Combinatorial Approaches (Ames: Iowa State University, 2011).

    Book  Google Scholar 

  38. R. Hayati and A. Barzegar, Mater. Sci. Eng. B 172, 121–126 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02–2017.308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Dai Vuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, L.D., Gio, P.D., Quang, N.D.V. et al. Development of 0.8Pb(Zr0.48Ti0.52)O3–0.2Pb [(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 Ceramics for High-Intensity Ultrasound Applications. J. Electron. Mater. 47, 5944–5951 (2018). https://doi.org/10.1007/s11664-018-6454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6454-8

Keywords

Navigation