Skip to main content
Log in

Enhanced properties of KNLN–BZ lead-free piezoelectric ceramics via three-step sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, 0.94(K0.48Na0.52)0.935Li0.065NbO3–0.06BaZrO3 (abbreviated as KNLN–0.06BZ) lead-free ceramics were prepared by conventional sintering (CS) and three-step sintering (TSS). The effects of sintering process on the microstructure and piezoelectric properties of ceramics were systematically studied. The result showed that, the ceramic prepared by TSS obtained higher density and better electrical properties compared to the ceramic prepared by CS. As we all know, the formation of defects will have a pinning effect on the domain switching. According to the results of impedance spectroscopy analysis, the ceramics prepared by TSS have fewer oxygen vacancies, which will make domain switching easier at an applied electric field, resulting in more excellent piezoelectric activity. The ceramics prepared by TSS with different sintering conditions showed different properties, but multiple phases may coexist in all ceramic samples according to the analysis of XRD, and the domain can adequately switch at an external electric field due to lower energy barrier at the phase boundary, resulting in high piezoelectric properties of ceramics. Hence, when the sintering condition was 1050 °C/0 min–1150 °C/5 min–1070 °C/20 h, the ceramic samples exhibited an optimal performance of ρ = 4.51 g/cm3, d33 ~ 258 pC/N, kp ~ 0.35, and TC ~ 328 ºC. This superior result manifests that the KNLN–0.06BZ ceramic prepared by TSS is a promising ceramic for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Xiao, J. Adv. Dielectr. 01, 33 (2012)

    Article  Google Scholar 

  2. E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)

    Article  CAS  Google Scholar 

  3. K. Shibata, F. Oka, A. Ohishi, T. Mishima, I. Kanno, Appl. Phys. Express 1, 011501 (2008)

    Article  Google Scholar 

  4. A. Zhang, Z. Liu, B. Xie et al., Appl. Catal. B-Environ. 279, 119353 (2020)

    Article  CAS  Google Scholar 

  5. M. Zheng, Y. Hou, L. Chao, M. Zhu, J. Mater. Sci. Mater. Electron. 29, 9582 (2018)

    Article  CAS  Google Scholar 

  6. P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)

    Article  CAS  Google Scholar 

  7. N. Ledermann, P. Muralt, J. Baborowski et al., Sens. Actuators A-Phys. 105, 162 (2003)

    Article  CAS  Google Scholar 

  8. W. Shi, J. Du, C. Chen et al., J. Mater. Sci. Mater. Electron. 31, 959 (2019)

    Article  Google Scholar 

  9. C. Shi, J. Ma, J. Wu et al., J. Alloys Compd. 846, 156245 (2020)

    Article  CAS  Google Scholar 

  10. P. Li, J. Zhai, B. Shen et al., Adv. Mater. 30, 1705171 (2018)

    Article  Google Scholar 

  11. J. Chen, J. Cheng, J. Guo et al., J. Am. Ceram. Soc. 103, 374 (2020)

    Article  CAS  Google Scholar 

  12. Y. Wang, J. Wu, D. Xiao et al., J. Am. Ceram. Soc. 91, 2772 (2008)

    Article  CAS  Google Scholar 

  13. Y. Wen, G. Fan, M. Hao et al., J. Electron. Mater. 49, 931 (2019)

    Article  Google Scholar 

  14. W. Wu, Z. Wang, D. Xiao et al., Integr. Ferroelectr. 141, 82 (2013)

    Article  CAS  Google Scholar 

  15. J. Chen, J. Daniels, J. Jian et al., Acta Mater. 197, 1359 (2020)

    Google Scholar 

  16. H. Tao, H. Wu, J. Wu et al., J. Am. Chem. Soc. 141, 13987 (2019)

    Article  CAS  Google Scholar 

  17. X. Lv, D. Xiao, J. Wu et al., Chem. Soc. Rev. 49, 671 (2020)

    Article  CAS  Google Scholar 

  18. M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)

    Article  CAS  Google Scholar 

  19. J. Xing, L. Jiang, C. Zhao et al., J. Materiomics 6, 513 (2020)

    Article  Google Scholar 

  20. T. Zheng, Y. Zhang, J. Wu et al., Nano Energy 70, 104559 (2020)

    Article  CAS  Google Scholar 

  21. S. Zhang, H.J. Lee, C. Ma, X. Tan, A. Fetiera, J. Am. Ceram. Soc. 94, 3659 (2011)

    Article  CAS  Google Scholar 

  22. Z. Yu, X. Chen, Y. Su et al., J. Mater. Sci. 54, 13457 (2019)

    Article  CAS  Google Scholar 

  23. J. Li, K. Wang, B. Zhang, L. Zhang, J. Am. Ceram. Soc. 89, 706 (2006)

    Article  CAS  Google Scholar 

  24. M. Feizpour, H. Barzegar-Bafrooei, R. Hayati, T. Ebadzadeh, Ceram. Int. 40, 871 (2014)

    Article  CAS  Google Scholar 

  25. M. Chi, W. Ma, J. Guo et al., J. Mater. Sci. Mater. Electron. 30, 21435 (2019)

    Article  CAS  Google Scholar 

  26. D. Liu, X. Zhang, W. Su et al., J. Alloys Compd. 779, 800 (2019)

    Article  CAS  Google Scholar 

  27. Y. Zhang, J. Zhai, S. Xue, Chem. Phys. Lett. 758, 137906 (2020)

    Article  CAS  Google Scholar 

  28. T. Chu, C. He, H. Tailor, X. Long, Curr. Comput.-Aided Drug Des. 4, 296 (2014)

    Google Scholar 

  29. J. Zhou, J. Li, K. Wang, X. Zhang, J. Mater. Sci. 46, 5111 (2011)

    Article  CAS  Google Scholar 

  30. X. Lv, J. Wu, D. Xiao, J. Zhu, X. Zhang, J. Am. Ceram. Soc. 101, 1191 (2018)

    Article  CAS  Google Scholar 

  31. Z. Cen, Y. Huan, W. Feng et al., J. Mater. Chem. A 6, 23904 (2018)

    Article  CAS  Google Scholar 

  32. S. Yang, C. Hong, C. Tsai, Y. Liou, S. Chu, J. Eur. Ceram. Soc. 32, 1643 (2012)

    Article  CAS  Google Scholar 

  33. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M.P. Thi, Mater. Chem. Phys. 117, 138 (2009)

    Article  CAS  Google Scholar 

  34. Z. Zeng, Q. Wu, M. Hao et al., J. Mater. Sci. Mater. Electron. 29, 8279 (2018)

    Article  CAS  Google Scholar 

  35. F. Zeng, G. Fan, M. Hao et al., J. Alloys Compd. 831, 154853 (2020)

    Article  CAS  Google Scholar 

  36. M. Saiful Islam, J. Mater. Chem. 10, 1027 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by International Scientific and Technological Innovation Cooperation Key Projects for National Key R&D Program of China (No: 2016YFE0203900), National Key R&D Program of China (No: 2018YFC0116100), and Nature Science Foundation of HuBei Province of China (2018CFB771). The authors thank the Analytical and Testing Center of the Huazhong University of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifen Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wen, Y., Hao, M. et al. Enhanced properties of KNLN–BZ lead-free piezoelectric ceramics via three-step sintering. J Mater Sci: Mater Electron 32, 19778–19785 (2021). https://doi.org/10.1007/s10854-021-06502-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06502-4

Navigation