Skip to main content
Log in

Densification behavior and electrical properties of the PZT-PZMnN-based ceramics prepared by two-step sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the piezoelectric properties of 0.8Pb(Zr0.48Ti0.52)O3-0.2Pb[(Zn1/3Nb2/3)0.625(Mn1/3Nb2/3)0.375]O3 + 0.1 wt% Bi2O3 + 0.1 wt% CuO ceramics were improved by two-step sintering. Adjusting the sintering parameters, namely, temperature (T) and time (t) (T1 = 1050 °C, t1 = 5 min., T2 = 900 °C, t2 = 4 h), the Densification behavior of Bi2O3 and CuO-co-doped PZT-PZMnN was significantly improved at a low sintering temperature of 900 °C in the presence of PbO-Bi2O3 and CuO-PbO liquid phases. At optimized two-step sintering parameters, electrical properties of Bi2O3 and CuO-co-doped PZT-PZMnN ceramics are best: the density (ρ) of 7.85 g/cm3, dielectric constant (εr) of 1281, dielectric loss (tanδ) of 0.005, maximum constant (at Tm = 265 °C) of 14,468, electromechanical coupling factor (kp) of 0.61, (kt) of 0.50, the piezoelectric charge coefficient (d33) of 340 pC/N, the remanent polarization (Pr) of 22.4 µC/cm2, the mechanical quality factor (Qm) of 1260, the unipolar strain of 0.30% and the normalized strain of 576 pm/V were achieved at T2 = 900 °C and t2 = 4 h, which meeting the requirements of multilayer piezoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this article will be made available by the authors on reasonable request.

References

  1. L.D. Vuong, P.D. Gio, N.D.V. Quang, T.D. Hieu, T.P. Nam, J. Electron. Mater. 47(10), 5944–5951 (2018)

    Article  CAS  Google Scholar 

  2. J. Zhang, Y. Zhang, Z. Yan, A. Wang, P. Jiang, M. Zhong, Sci. Eng. Compos. Mater. 27(1), 359–365 (2020)

    Article  CAS  Google Scholar 

  3. L.D. Vuong, P.D. Gio, J. Mod. Phys. 05(14), 1258–1263 (2014)

    Article  Google Scholar 

  4. A.I. Kingon, J.B. Clark, J. Am. Ceram. Soc. 66(4), 256–260 (1983)

    Article  CAS  Google Scholar 

  5. D.L. Corker, R.W. Whatmore, E. Ringgaard, W.W. Wolny, J. Eur. Ceram. Soc. 20(12), 2039–2045 (2000)

    Article  CAS  Google Scholar 

  6. B.S. Kim, J.-H. Ji, J.-H. Koh, Ceram. Int. 47(5), 6683–6690 (2021)

    Article  CAS  Google Scholar 

  7. I. Diop, N. David, J.M. Fiorani, R. Podor, M. Vilasi, J. Chem. Thermodyn. 41(3), 420–432 (2009)

    Article  CAS  Google Scholar 

  8. I. Manasijević, L. Balanović, T.H. Grgurić, D. Minić, M. Gorgievski, Mater. Res. 21(6), e20180501 (2018)

    Article  Google Scholar 

  9. J. Vizdal, M.H. Braga, A. Kroupa, K.W. Richter, D. Soares, L.F. Malheiros, J. Ferreira, Calphad 31(4), 438–448 (2007)

    Article  CAS  Google Scholar 

  10. J.G. Chen, Z. Xu, X. Yao, Mater. Res. Innov. 14(3), 234–237 (2010)

    Article  CAS  Google Scholar 

  11. S. Li, J. Fu, R. Zuo, Ceram. Int. 47(14), 20117–20125 (2021)

    Article  CAS  Google Scholar 

  12. M.A. Qaiser, A. Hussain, Y. Xu, Y. Wang, Y. Wang, Y. Yang, G. Yuan, Chin. Phys. B 26(3), 037702 (2017)

    Article  Google Scholar 

  13. P.D. Gio, L.D. Vuong, L.T.U. Tu, J. Mater. Sci.: Mater. Electron. 32(10), 13738–13747 (2021)

    CAS  Google Scholar 

  14. P.D. Gio, L.D. Vuong, V. ThanhTung, Journal of Electroceramics (2021).

  15. X.H. Wang, X.Y. Deng, H.-L. Bai, H. Zhou, W.-G. Qu, L.T. Li, I.W. Chen, J. Am. Ceram. Soc. 89(2), 438–443 (2006)

    Article  CAS  Google Scholar 

  16. K.-K. Fan, Y.-P. Wang, Y. Yang, Energy Harvest. Syst. 2(3–4), 113–117 (2015)

    Article  Google Scholar 

  17. T. Zheng, J. Wu, J. Mater. Chem. A 3(13), 6772–6780 (2015)

    Article  CAS  Google Scholar 

  18. P.D. Gio, L.D. Vuong, V. Thanh Tung, J. Electroceram. (2021)

  19. P.D. Gio, L.D. Vuong, H.T.T. Hoa, J. Mater. Sci. Chem. Eng. 2(11), 8 (2014)

    Google Scholar 

  20. Y.H. Kim, H. Ryu, Y.-K. Cho, H.-J. Lee, S. Nahm, J. Am. Ceram. Soc. 96(1), 312–317 (2013)

    Article  CAS  Google Scholar 

  21. J.-H. Ji, U.-C. Moon, H.-I. Kwon, J.-H. Koh, Ceram. Int. 43, S97–S101 (2017)

    Article  CAS  Google Scholar 

  22. L. Hai, Z. Bo-Ping, P. Yu, Z. Lei, W. Kai-sheng, L. Yan-tao, J. Mater. Res. 30(6), 782–790 (2015)

    Article  CAS  Google Scholar 

  23. T. Huang, J. Fu, R. Zuo, J. Mater. Sci.: Mater. Electron. 30(10), 9540–9546 (2019)

    CAS  Google Scholar 

  24. Q.-C. Wu, M.-M. Hao, Z.-Q. Zeng, X.-C. Wang, W.-Z. Lv, G.-F. Fan, Ceram. Int. 43(14), 10866–10872 (2017)

    Article  CAS  Google Scholar 

  25. N. Truong-Tho, D. Le Vuong, J. Mater. Sci.: Mater. Electron. 32(12), 16601–16611 (2021)

    CAS  Google Scholar 

  26. S. Mahajan, O.P. Thakur, C. Prakash, Def. Sci. J. 57(1), 23 (2007)

    Article  CAS  Google Scholar 

  27. P. Jaitaa, P. Jarupoomc, ScienceAsia 46, 51–57 (2020)

    Article  Google Scholar 

  28. A. Ullah, C.W. Ahn, A. Hussain, I.W. Kim, Curr. Appl. Phys. 10(6), 1367–1371 (2010)

    Article  Google Scholar 

  29. L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458(1–2), 504–508 (2008)

    Article  CAS  Google Scholar 

  30. E. Akça, H. Yılmaz, Process. Appl. Ceram. 13(1), 65–78 (2019)

    Article  Google Scholar 

  31. M. Keshavarzi, H. Rahmani, A. Nemati, M. Hashemi, Appl. Phys. A 124(2), 145 (2018)

    Article  Google Scholar 

  32. L. Bian, X. Qi, K. Li, J. Fan, Z. Li, E. Sun, B. Yang, S. Dong, W. Cao, J. Eur. Ceram. Soc. (2021)

  33. D. Bochenek, P. Niemiec, I. Szafraniak-Wiza, G. Dercz, J. Therm. Anal. Calorim. 142(1), 5–17 (2020)

    Article  CAS  Google Scholar 

  34. C.C. Tsai, S. Chu, C. Lu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 660–668 (2009)

    Article  Google Scholar 

  35. I. Kim, M. Kim, S. Jeong, J. Song, H. Joo, V.V. Thang, A. Muller, J. Korean Phys. Soc. 58(3), 580–584 (2011)

    Article  CAS  Google Scholar 

  36. Y.-D. Hou, M.-K. Zhu, C.-S. Tian, H. Yan, Sens. Actuators A 116(3), 455–460 (2004)

    Article  CAS  Google Scholar 

  37. F. Gao, L.-H. Cheng, R.-Z. Hong, J. Liu, C.-J. Wang, C. Tian, Ceram. Int. 35(5), 1719–1723 (2009)

    Article  CAS  Google Scholar 

  38. B.H. Watson-Iii, M.J. Brova, M.A. Fanton, R.J. Meyer Jr., G.L. Messing, J. Am. Ceram. Soc. 103(11), 6319–6329 (2020)

    Article  Google Scholar 

  39. G. Fan, Z. Zeng, S. Jin, Q. Wu, W. Lv, X. Wang, Ferroelectrics 520(1), 126–134 (2017)

    Article  CAS  Google Scholar 

  40. H. Chen, J. Xing, J. Xi, T. Pu, H. Liu, J. Zhu, J. Alloys Compds. 860, 157930 (2021)

    Article  CAS  Google Scholar 

  41. L.-Q. Cheng, Z. Xu, C. Zhao, H.-C. Thong, Z.-Y. Cen, W. Lu, Y. Lan, K. Wang, RSC Adv. 8(62), 35594–35599 (2018)

    Article  CAS  Google Scholar 

  42. S. Dursun, A.E. Gurdal, S. Tuncdemir, C. Randall, Sens. Actuators A 286, 4–13 (2019)

    Article  CAS  Google Scholar 

  43. B. Zhang, H. Qi, R. Zuo, Ceram. Int. 44(5), 5453–5458 (2018)

    Article  CAS  Google Scholar 

  44. M. Kumar, G. Sharma, A.K. Singh, S. Kumar, J. Mater. Sci.: Mater. Electron. 31(16), 13104–13110 (2020)

    CAS  Google Scholar 

  45. B.H. Watson, M.J. Brova, M.A. Fanton, R.J. Meyer, G.L. Messing, J. Eur. Ceram. Soc. 40(12), 3956–3964 (2020)

    Article  CAS  Google Scholar 

  46. T.-G. Lee, S.-W. Kim, E.-J. Kim, S. Jin Lee, H.-G. Hwang, Y.-W. Hong, J.S. Kim, K.H. Chae, J.-W. Choi, C.-Y. Kang, S. Nahm, J. Eur. Ceram. Soc. 40(5), 1947–1956 (2020)

    Article  CAS  Google Scholar 

  47. T. Tou, Y. Hamaguti, Y. Maida, H. Yamamori, K. Takahashi, Y. Terashima, Jpn. J. Appl. Phys. 48(7), 07GM03 (2009)

    Article  Google Scholar 

  48. L.D. Vuong, N. Truong-Tho, J. Electr. Mater. 46(11), 6395–6402 (2017)

    Article  CAS  Google Scholar 

  49. C. Lonkar, D. Kharat, H. Kumar, S. Prasad, K. Balasubramanian

  50. H. Zhang, J. Shen, J. Tian, J. Zhou, W. Chen, Ferroelectrics 491(1), 15–26 (2016)

    Article  CAS  Google Scholar 

  51. P. Butnoi, P. Intawin, P. Yongsiri, N. Pisitpipathsin, P. Pengpad, P. Bintachitt, K. Pengpat, Key Eng. Mater. 675, 509 (2016)

    Article  Google Scholar 

  52. G. Picht, N.H. Khansur, K.G. Webber, H. Kungl, M.J. Hoffmann, M. Hinterstein, J. Appli. Phys. 128(21), 214105 (2020)

    Article  CAS  Google Scholar 

  53. X. Lu, J. Xu, L. Yang, C. Zhou, Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Materiom. 2(1), 87–93 (2016)

    Article  Google Scholar 

  54. X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, J. Materiom. 4(3), 202–207 (2018)

    Article  Google Scholar 

  55. A. Kumar, S.R. Emani, K.C. James Raju, J. Ryu, A.R. James, Energies 13(23) (2020) 6457.

  56. S. Samanta, V. Sankaranarayanan, K. Sethupathi, J. Mater. Sci.: Mater. Electron. 29(23), 20383–20394 (2018)

    CAS  Google Scholar 

  57. Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, Appl. Phys. Lett. 108(17), 172906 (2016)

    Article  Google Scholar 

  58. Z. Zhao, Y. Lv, Y. Dai, S. Zhang, Acta Mater. 200, 35–41 (2020)

    Article  CAS  Google Scholar 

  59. H. Tang, S. Zhang, Y. Feng, F. Li, T.R. Shrout, J. Am. Ceram. Soc. 96(9), 2857–2863 (2013)

    Article  CAS  Google Scholar 

  60. M.D. Nguyen, E.P. Houwman, G. Rijnders, Sci. Rep. 7(1), 12915 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2021.22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Dai Vuong.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vuong, L.D. Densification behavior and electrical properties of the PZT-PZMnN-based ceramics prepared by two-step sintering. J Mater Sci: Mater Electron 33, 6710–6721 (2022). https://doi.org/10.1007/s10854-022-07848-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07848-z

Navigation