Skip to main content
Log in

High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Piezoelectric actuators are at an important stage of their development into a large component market. This market pull is for dynamically driven actuators for Diesel injector valves in automobiles. Cost, yield, and reliability are important concerns for the automobile industry. A number of these concerns relate back to basic material science issues in the manufacture of the piezoelectric actuators. This paper discusses material development of the piezoelectric ceramic and new opportunities for higher temperature materials. An important consideration in developing low-fire ceramics is the flux selection for a given system, and these must be selected to limit electrode-ceramic interface reactions in both Ag/Pd and copper-metallized electrode actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zhao, M.C. Lai, and D.L. Harrington, Prog. in Energy and Combustion Science, 25(5), 437 (1999).

    Google Scholar 

  2. P.J. Tennison and R. Rertz, J. of Engineering for Gas Turbines and Power, Transactions of the ASME Engine, 123(1), 167 (2001).

    Google Scholar 

  3. Professional Engineering, 16(1), 54 (2003).

  4. V. Bottom, Introduction to Quartz Crystal Unit Design (Van Nostrand Reinhold Co., NY, 1982).

    Google Scholar 

  5. IEEE Standard on Piezoelectricity (American National Standards Institute, Washington, DC, 1976).

  6. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  7. J.M. Herbert, Ferroelectrics Transducers and Sensors (Gordon Breach Science Publishers, New York, 1982).

    Google Scholar 

  8. K. Yanagiwawa, H. Kanai, and Y. Yamashita, Jap. J. Appl. Phys., 34, 536 (1995).

    Google Scholar 

  9. H. Ochi, J. Am. Ceram. Soc., 48, 630 (1965).

    Google Scholar 

  10. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.E. Park, Jap. J. Appl. Phys., 40(1), 599 (2001).

    Google Scholar 

  11. R.E. Eitel, C.A. Randall, and T.R. Shrout, Jap. J. Appl. Phys., 41(49), 2099 (2002).

    Google Scholar 

  12. S.J. Zhang, C.A. Randall, and T.R. Shrout, Appl. Phys. Lett., 83, 3150 (2003).

    Google Scholar 

  13. T. Song, R.E. Eitel, T.R. Shrout, and W. Hackenberger, Jap. J. Appl. Phys., 42, 5101 (2003).

    Google Scholar 

  14. C.A. Randall, R.E. Eitel, T.R. Shrout, and I.M. Reaney, J. Appl. Phys., 93(11), 9271 (2003).

    Google Scholar 

  15. C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, and I.M. Reaney, J. Appl. Phys., 95(17), 3633 (2004).

    Google Scholar 

  16. C.A. Randall, R.E. Eitel, C. Stringer, T.H. Song, S.J. Zhang, and T.R. Shrout, Piezoelectric Single Crystals and Their Applications, edited by S. Trolier-McKinstry, L.E. Cross, and Y. Yamashita (Published Privately, University Park, PA, 2004) pp. 346–365.

    Google Scholar 

  17. H. Thomann, Zeitshcrift für Angewandte Physik, 20, 554 (1966).

    Google Scholar 

  18. F. Kulscar, J. Am. Ceram. Soc., 42(7), 343 (1959).

    Google Scholar 

  19. I. Ueda, Jap. J. Appl. Phys., 11(4), 450 (1972).

    Google Scholar 

  20. G.H. Haertling, J. Am. Ceram. Soc., 50, 329 (1967).

    Google Scholar 

  21. K. Carl and K.H. Hardtl, Phys. Sol. Stat. (A), 8, 87 (1971).

    Google Scholar 

  22. L. Eyrand, P. Eyrand, and B. Claudel, J. Sol. Stat. Chem., 53, 266 (1984).

    Google Scholar 

  23. P. Gerthsen, K.H. Hardtl, and N.A. Schmidt, J. Appl. Phys., 51(2), 1131 (1980).

    Google Scholar 

  24. G. Arlt, H. Dederichs, and R. Herbert, Ferroelectrics, 74, 37 (1987).

    Google Scholar 

  25. L. Rayleigh, Philosophical Mag., 23(142), 225 (1987).

    Google Scholar 

  26. D.V. Taylor and D. Damjanovic, J. Appl. Phys., 82(4), 1973 (1997).

    Google Scholar 

  27. D. Damjanovic and M. Demartin, J. Phys. Condensed Matter, 9, 4943 (1997).

    Google Scholar 

  28. D.A. Hall, J. Mat. Science, 36, 4575 (2001).

    Google Scholar 

  29. D. Damjanovic and G. Robert, Piezoelectric Materials in Devices, edited by N. Setter, (Switzerland), pp. 353–388.

  30. L.J. Bowen, T.R. Shrout, W.A. Schulze, and J.V. Biggers, Ferroelectrics, 27, 59 (1980).

    Google Scholar 

  31. S. Takahashi, A. Ochi, M. Yonezawa, T. Yano, T. Hamatsuki, and I. Fukui, Ferroelectrics, 50, 181 (1983).

    Google Scholar 

  32. K. Uchino, Acta Mater., 46(1), 3745 (1998).

    Google Scholar 

  33. K. Lubitz, C. Schuh, T. Steinkopff, and A. Wolff, Piezoelectric Materials in Devices, edited by N. Setter (Switzerland), pp. 183–194.

  34. S.F. Wang, J.P. Dougherty, W. Huebner, and J.G. Pepin, J. Am. Ceram. Soc., 77(12), 3051 (1994).

    Google Scholar 

  35. P. Groen, American Ceramic Society Meeting (American Ceramic Society, Cocoa Beach, 1993).

    Google Scholar 

  36. C.A. Randall, A. Kelnberger, T. Shrout (in progress).

  37. Y.M. Chiang, D. Birnie III and W.D. Kingery, Physical Ceramics} (J. Wiley {& Sons, Inc., New York, Cincinnati, Toronto, Brisbane, Singapore, 1996).

  38. M. Kondo and K. Kurihara, J. Am. Ceram. Soc., 84(11), 2469 (2001).

    Google Scholar 

  39. R.B. Atkin, R.L. Homan, and R.M. Fulrath, J. Am. Ceram. Soc., 54, 113 (1971).

    Google Scholar 

  40. A.I. Kingon and J.B. Clark, J. Am. Ceram. Soc., 66(4), 256 (1983).

    Google Scholar 

  41. K. Murakami, D. Mabuchi, T. Kurita, Y. Niwa, and S. Kaneko, Jap. J. Phys., 35, 5188 (1996).

    Google Scholar 

  42. X.X. Wang, K. Murakami, O. Sugiyama, and S. Kaneko, J. European Ceram. Soc., 21, 1367 (2001).

    Google Scholar 

  43. D.E. Wittmer and R.C. Buchanan, J. Am. Ceram. Soc., 64, 485 (1981).

    Google Scholar 

  44. X. Wang, P. Lu, and W. Xue, in Proceedings of Sixth International Symposium on Applications of Ferroelectrics (ISAF, 1992) USA, pp. 585–587.

  45. C.H. Wang and L. Wu, Jap. J. Appl. Phys., 32(7), 3204 (1993).

    Google Scholar 

  46. T. Hayashi, T. Inoue, and Y. Akiyama, J. European Ceram. Soc., 29, 999 (1999).

    Google Scholar 

  47. A.K. Saha, D. Kumar, O. Parkash, A. Sen, and H.S. Maiti, Mat. Res. Bull., 38, 1165 (2003).

    Google Scholar 

  48. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).

    Google Scholar 

  49. G. Helke, S. Seifert, and S.-J. Cho, J. European Ceramic Soc., 19, 1265 (1999).

    Google Scholar 

  50. C.A. Randall, A.D. Hilton, D.J. Barber, and T.R. Shrout, J. Mat. Res., 8(4), 880 (1993).

    Google Scholar 

  51. K. Nagata and J. Thougrueng, Jap. J. Appl. Phys., 37(9B), 5306 (1998).

    Google Scholar 

  52. J.C. Liu and J.Y. Chan, Mat. Chem. and Physics, 43, 256 (1996).

    Google Scholar 

  53. H. Kanai, O. Furukawa, S. Nakamura, and Y. Yamashita, J. Am. Ceramics Soc., 76(2), 454 (1993).

    Google Scholar 

  54. T. Takeuchi, T. Tani, and Y. Saito, Jap. J. Appl. Phys. Part 1, 9B, 5553 (1999).

    Google Scholar 

  55. T. Tani, J. Kor. Phys. Soc., 32, S1217 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Eitel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, C.A., Kelnberger, A., Yang, G.Y. et al. High Strain Piezoelectric Multilayer Actuators—A Material Science and Engineering Challenge. J Electroceram 14, 177–191 (2005). https://doi.org/10.1007/s10832-005-0956-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-0956-5

Keywords:

Navigation