Skip to main content
Log in

The sulfur–nitrogen co-doped porous carbon material derived from biomass was employed as the anode of a lithium–sulfur battery

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The raw material selected for this research was Brazil chestnut shells (BCs), which were utilized to gain porous carbon as a positive electrode for lithium–sulfur batteries (LSBs). The effects of N/S co-doped on the electrochemical properties of porous carbon materials were studied using thiourea as nitrogen and sulfur sources. The experimental results indicate that the N/S co-doped carbon materials have a higher mesopore ratio than the undoped porous carbon materials. The porous carbon material NSPC-2 has a lotus-like structure with uniform pore distribution. The N and S doping contents are 2.5% and 5.4%. The prepared N/S co-doped porous carbon materials were combined with S, respectively, and three kinds of sulfur carbon composites were obtained. Among them, the composite NSPC-2/S can achieve the initial specific discharge capacity of 1018.6 mAh g−1 at 0.2 C rate. At 1 C rate, the initial discharge capacity of the material is 730.6 mAh g−1, and the coulomb efficiency is 98.6% and the capacity retention rate is 71.5% after 400 charge–discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Lv Z, Wang P, Wang J, Tian S, Yi T (2023) Key challenges, recent advances and future perspectives of rechargeable lithium-sulfur batteries. J Ind Eng Chem 124:68–88. https://doi.org/10.1016/j.jiec.2023.04.025

    Article  CAS  Google Scholar 

  2. Cano ZP, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z (2018) Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 3:279–289. https://doi.org/10.1038/s41560-018-0108-1

    Article  Google Scholar 

  3. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032. https://doi.org/10.1039/c2cs35256g

    Article  CAS  PubMed  Google Scholar 

  4. Hagen M, Hanselmann D, Ahlbrecht K, Maca R, Gerber D, Tübke J (2015) Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv Energy Mater. https://doi.org/10.1002/aenm.201401986

    Article  Google Scholar 

  5. Yang Y, Wang R, Xue J, Liu F, Yan J, Jia S, Xiang T, Huo H, Zhou J, Li L (2021) In situ forming asymmetric bi-functional gel polymer electrolyte in lithium-sulfur batteries. J Mater Chem 9:27390–27397. https://doi.org/10.1039/d1ta06007d

    Article  CAS  Google Scholar 

  6. Cheng X, Yan C, Huang J, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang S, Zhang Q (2017) The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. J Mater Chem A 6:18–25. https://doi.org/10.1016/j.ensm.2016.09.003

    Article  Google Scholar 

  7. Li C, Sun Q, Zhang Q, Xu C, Wang S, Ma Y, Shi X, Zhang H, Song D, Zhang L (2023) Multifunctional binder capable of promoting the reaction dynamics of wide temperature operable lithium-sulfur battery. Chem Eng J. https://doi.org/10.1016/j.cej.2022.140706

    Article  PubMed  PubMed Central  Google Scholar 

  8. Watanabe H, Sugiura Y, Seki S, Han JH, Shitanda I, Itagaki M, Umebayashi Y (2023) Discharge behavior within lithium-sulfur batteries using Li-Glyme solvate ionic liquids. J Phys Chem C 127:6645–6654. https://doi.org/10.1021/acs.jpcc.3c00447

    Article  CAS  Google Scholar 

  9. Song H, Suh S, Park H, Jang D, Kim J, Kim H-J (2021) Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. J Ind Eng Chem 99:309–316. https://doi.org/10.1016/j.jiec.2021.04.033

    Article  CAS  Google Scholar 

  10. Tang Q, Li H, Zuo M, Zhang J, Huang Y, Bai P, Xu J, Zhou K (2017) Optimized assembly of micro-/meso-/macro-porous carbon for Li–S batteries. NANO 12:73–81. https://doi.org/10.1142/S1793292017500217

    Article  CAS  Google Scholar 

  11. Chen Y, Tu C, Liu Y, Liu P, Gong P, Wu G, Huang X, Chen J, Liu T, Jiang J (2022) Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett 33:561–571. https://doi.org/10.1007/s42823-022-00445-4

    Article  Google Scholar 

  12. Lei D, Hou Z, Li N, Cao J, Ren L, Liu H, Zhang Y, Wang J (2023) A homologous N/P-co-doped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors. Carbon 201:260–268. https://doi.org/10.1016/j.carbon.2022.09.019

    Article  CAS  Google Scholar 

  13. Choi M, Lee S, Jang D, Park S (2022) Production of Fe3C/N-doped carbon hybrid and its electrocatalytic performance for oxygen evolution reactions. Carbon Lett 32:885–892. https://doi.org/10.1007/s42823-022-00326-w

    Article  Google Scholar 

  14. Wen Y, Wang X, Huang J, Li Y, Li T, Ren B (2023) Coffee grounds derived sulfur and nitrogen dual-doped porous carbon for the cathode material of lithium-sulfur batteries. Carbon Lett 33:1265–1278. https://doi.org/10.1007/s42823-023-00483-6

    Article  Google Scholar 

  15. Yuan M, Wang Z, Rao Y, Wang Y, Gao B, Yu J, Li H, Chen X (2023) Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chitosan/lignin-reinforced wood for boosted micro-supercapacitor. Carbon 202:296–304. https://doi.org/10.1016/j.carbon.2022.11.004

    Article  CAS  Google Scholar 

  16. Zhu J, Zhang Q, Guo L, Zhao Y, Zhang R, Liu L, Yu J (2022) Highly flexible, freestanding supercapacitor electrodes based on hollow hierarchical porous carbon nanofibers bridged by carbon nanotubes. Chem Eng J. https://doi.org/10.1016/j.cej.2022.134662

    Article  PubMed  PubMed Central  Google Scholar 

  17. Choi J, Kim E, Park B-I, Choi I, Park B-H, Lee S-B, Lee J, Yu S (2022) Meringue-derived hierarchically porous carbon as an efficient polysulfide regulator for lithium-sulfur batteries. J Ind Eng Chem 115:355–364. https://doi.org/10.1016/j.jiec.2022.08.019

    Article  CAS  Google Scholar 

  18. Li X, Fu N, Zou J, Zeng X, Chen Y, Zhou L, Huang H (2017) Sulfur-impregnated N-doped hollow carbon nanofibers as cathode for lithium-sulfur batteries. Mater Lett 209:505–508. https://doi.org/10.1016/j.matlet.2017.08.083

    Article  CAS  Google Scholar 

  19. Li X, Yu Y, Tang Z, Yang Y, Li Y, Cao J, Chen L (2022) N, S-doped graphene derived from graphene oxide and thiourea-formaldehyde resin for high stability lithium-sulfur batteries. Phys Chem Chem Phys 24:2879–2886. https://doi.org/10.1039/d1cp04675f

    Article  CAS  PubMed  Google Scholar 

  20. Li Z, Lin J, Li B, Yu C, Wang H, Li Q (2021) Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. J Energy Storage. https://doi.org/10.1016/j.est.2021.103437

    Article  Google Scholar 

  21. Chen X, Ran F, Huang Y, Zheng R, Yu H, Shu J, Xie Y, He Y (2021) Insight into the synergistic effect of N, S co-doping for carbon coating layer on niobium oxide anodes with ultra-long life. Adv Funct Mater. https://doi.org/10.1002/adfm.202100311

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee H, Han S, Lee J, Lee G, Lee S, Joh H-I (2023) Effect of pre-annealing on chemical configuration and heteroatom doping of highly active carbon catalysts for the oxygen reduction reaction. J Ind Eng Chem 128:542–549. https://doi.org/10.1016/j.jiec.2023.08.019

    Article  CAS  Google Scholar 

  23. Tang Z, Zhou S, Huang Y, Wang H, Zhang R, Wang Q, Sun D, Tang Y, Wang H (2023) Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: origins, solutions, and perspectives. Electrochem Energy Rev. https://doi.org/10.1007/s41918-022-00178-y

    Article  Google Scholar 

  24. Wang M, Mao X, Liu J, Deng B, Deng S, Jin S, Li W, Gong J, Deng R, Zhu J (2022) A versatile 3D-confined self-assembly strategy for anisotropic and ordered mesoporous carbon microparticles. Adv Sci. https://doi.org/10.1002/advs.202202394

    Article  Google Scholar 

  25. Kim D-K, Byun J-S, Moon S, Choi J, Chang J-H, Suk J (2022) Molten salts approach of metal-organic framework-derived nitrogen-doped porous carbon as sulfur host for lithium-sulfur batteries. Chem Eng J. https://doi.org/10.1016/j.cej.2022.135945

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nema P, Mohanty K, Thangavel R (2023) Bio-mass derived hierarchically porous and high surface area carbon as an efficient sulfur host for lithium-sulfur batteries. J Ind Eng Chem 121:235–241. https://doi.org/10.1016/j.jiec.2023.01.027

    Article  CAS  Google Scholar 

  27. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Wee A, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  28. Wang C, Bai L, Zhao F, Bai L (2022) Activated carbon fibers derived from natural cattail fibers for supercapacitors. Carbon Lett 32:907–915

    Article  Google Scholar 

  29. Sun Y, Shi X, Yang Y, Suo G, Zhang Li LuS, Chen Z (2022) Biomass-Derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater. https://doi.org/10.1002/adfm.202201584

    Article  Google Scholar 

  30. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921. https://doi.org/10.1039/c5ee01985k

    Article  CAS  Google Scholar 

  31. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  32. Xin G, Xing Y, Sun W, Song J, Bao J, An J, Liu F, She S, Hu W, Bulin C (2024) Construction of three-dimensional porous graphene with N, S co-doping in KOH-K2CO3 eutectic active molten salt system for supercapacitors. Electrochim Acta. https://doi.org/10.1016/j.electacta

    Article  Google Scholar 

  33. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Xiang K, Ma H, Arramel A (2023) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. 33:1321–1331. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  34. Lesnak M, Cvejn D, Petr M, Peikertova P, Gabor R, Fordos T, Czernek P, Placha D (2023) A novel N-doped carbon nanomaterial-carbon nano-mousse. J Mater Chem A 11:4627–4638. https://doi.org/10.1039/d2ta07947j

    Article  CAS  Google Scholar 

  35. Kim S, Cho M, Lee Y (2020) Multifunctional chitosan-rGO network binder for enhancing the cycle stability of Li-S batteries. Adv Funct Mater. https://doi.org/10.1002/adfm.201907680

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  37. Chong W, Huang J, Xu Z, Qin X, Wang X, Kim J (2017) Lithium-Sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers. Adv Funct Mater. https://doi.org/10.1002/adfm.201604815

    Article  Google Scholar 

  38. Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Wang H, Xiang K, Liu S, Zhai T (2022) Strategic design and fabrication of MXenes-Ti3C NnCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  39. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  40. Goei R, Tan F, Ong A, Mandler D, Tok A (2022) Development of nitrogen-decorated carbon dots (NCDs) thermally conductive film for windows application. Carbon Lett 32:1065–1072. https://doi.org/10.1007/s42823-022-00337-7

    Article  Google Scholar 

  41. Saka C (2022) Phosphorus and sulphur-doped microalgae carbon as a highly active metal-free catalyst for efficient hydrogen release in NaBH4 methanolysis. Fuel. https://doi.org/10.1016/j.fuel.2021.122183

    Article  Google Scholar 

  42. Yang C, Xiong J, Ou X, Wu C, Xiong X, Wang J, Huang K, Liu M (2018) A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode. Mater Today Energy 8:37–44. https://doi.org/10.1016/j.mtener.2018.02.001

    Article  Google Scholar 

  43. Wang L, Hu L, Yang W, Liang D, Liu L, Liang S, Yang C, Fang Z, Dong Q, Deng C (2019) N/S co-doped porous carbon sheets derived from bagasse as high-performance anode materials for sodium-ion batteries. Nanomaterials. https://doi.org/10.3390/nano9091203

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu P, Wang Y, Liu J (2019) Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J Energy Chem 34:171–185. https://doi.org/10.1016/j.jechem.2018.10.005

    Article  Google Scholar 

  45. Li G, Li Y, Chen X, Hou X, Lin H, Jia L (2022) One step synthesis of N, P co-doped hierarchical porous carbon nanosheets derived from pomelo peel for high performance supercapacitors. J Colloid Interface Sci 605:71–78. https://doi.org/10.1016/j.jcis.2021.07.065

    Article  CAS  PubMed  Google Scholar 

  46. Ran J, Liu Y, Feng H, Zhan H, Yang S (2023) Rapid hydrothermal green synthesis of core-shell-shaped NiCo2O4@MoS2/RGO ternary composites for high-performance electrode materials. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2023.11.065

    Article  Google Scholar 

  47. Chen T, Zhang Z, Cheng B, Chen R, Hu Y, Ma L, Zhu G, Liu J, Jin Z (2017) Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium-sulfur batteries. J Am Chem Soc 139:12710–12715. https://doi.org/10.1021/jacs.7b06973

    Article  CAS  PubMed  Google Scholar 

  48. Liu Z, Zheng X, Luo S, Xu S, Yuan N, Ding J (2016) High performance Li-S battery based on amorphous NiS2 as the host material for the S cathode. J Mater Chem A 4:13395–13399. https://doi.org/10.1039/c6ta05635k

    Article  CAS  Google Scholar 

  49. Fang R, Zhao S, Pei S, Qian X, Hou P, Cheng H, Liu C, Li F (2016) Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10:8676–8682. https://doi.org/10.1021/acsnano.6b04019

    Article  CAS  PubMed  Google Scholar 

  50. Capkova D, Knap V, Fedorkova A, Stroe D (2022) Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. J Energy Chem 72:318–325. https://doi.org/10.1016/j.jechem.2022.05.026

    Article  CAS  Google Scholar 

  51. Ali T, Yan C (2020) 2D materials for inhibiting the shuttle effect in advanced lithium-sulfur batteries. ChemSusChem 13:1447–1479. https://doi.org/10.1002/cssc.201901981

    Article  CAS  PubMed  Google Scholar 

  52. Kong W, Yan L, Luo Y, Wang D, Jiang K, Li Q, Fan S, Wang J (2017) Ultrathin mnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv Funct Mater 27:11. https://doi.org/10.1002/adfm.201606663

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This report was financially supported by the Henan Major Science and Technology Project (No.201300310900), the Henan Province major science and technology project (No. 221100320100), the 2021 Henan Province Colleges and Universities Young Backbone Teacher Training Plan (No. 2021GGJS002), and 2021 Nanyang City Collaborative Innovation Major Project (No. 21XTCX12003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Niu, M., Gao, C. et al. The sulfur–nitrogen co-doped porous carbon material derived from biomass was employed as the anode of a lithium–sulfur battery. Carbon Lett. 34, 1385–1398 (2024). https://doi.org/10.1007/s42823-024-00697-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-024-00697-2

Keywords

Navigation