Skip to main content

Advertisement

Log in

Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available in the MASSIVE repository under accession code: MSV000093749, https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp.

References

  1. Navarrete AA, Tsai SM, Mendes LW, Faust K, De Hollander M, Cassman NA, Raes J, Van Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448. https://doi.org/10.1111/mec.13172

    Article  CAS  PubMed  Google Scholar 

  2. Boulton CA, Lenton TM, Boers N (2022) Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat Clim Chang 12:271–278. https://doi.org/10.1038/s41558-022-01287-8

    Article  ADS  Google Scholar 

  3. Cao F, Medeiros PM, Miller WL (2016) Optical characterization of dissolved organic matter in the Amazon river plume and the adjacent ocean: Examining the relative role of mixing, photochemistry, and microbial alterations. Mar Chem 186:178–188. https://doi.org/10.1016/j.marchem.2016.09.007

    Article  CAS  Google Scholar 

  4. Moreira A, Fageria NK, Garcia Y, Garcia A (2011) Soil fertility, mineral nitrogen, and microbial biomass in upland soils of the Central Amazon under different plant covers. Commun Soil Sci Plant Anal 42:694–705. https://doi.org/10.1080/00103624.2011.550376

    Article  CAS  Google Scholar 

  5. Santos CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R (2020) Uncovering the gene machinery of the Amazon River microbiome to degrade rainforest organic matter. Microbiome 151:1–18

    Google Scholar 

  6. Moreira JCF, Brum M, de Almeida LC, Barrera-Berdugo S, de Souza AA, de Camargo PB, Oliveira RS, Alves LF, Rosado BHP, Lambais MR (2021) Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Sci Total Environ 773:145066. https://doi.org/10.1016/j.scitotenv.2021.145066

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Melendez JR, Mendoza B, Béjar J, Luna D, Osorio M, Jimenez M (2020) Differences in the ratio of soil microbial biomass carbon (MBC) and soil organic carbon (SOC) at various altitudes of hyperalic alisol in the Amazon region of Ecuador. F1000Research 9:1–9. https://doi.org/10.12688/f1000research.22922.1

    Article  CAS  Google Scholar 

  8. Camargo AP, De SRSC, Jose J, Gerhardt IR, Huntemann M, Kyrpides NC, Carazzolle MF (2022) Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot. ISME J 17:354–370. https://doi.org/10.1038/s41396-022-01345-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caniato MM, Catarino AdeM, Sousa TF, da Silva GF, Bichara KPdeA, da Cruz JC, de Assis LAG, Hanada RE (2020) Diversity of bacterial strains in biochar-enhanced amazon soil and their potential for growth promotion and biological disease control in tomato. Acta Amazon 50:278–288. https://doi.org/10.1590/1809-4392201901072

    Article  Google Scholar 

  10. Lacava PT, Bogas AC, Cruz FdePN (2022) plant growth promotion and biocontrol by endophytic and rhizospheric microorganisms from the tropics: A review and perspectives. Front Sustain Food Syst 6:1–16. https://doi.org/10.3389/fsufs.2022.796113

    Article  Google Scholar 

  11. Fonseca JP, Hoffmann L, Cabral BCA, Dias VHG, Miranda MR, de Azevedo Martins AC, Boschiero C, Bastos WR, Silva R (2018) Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve. Gene 642:389–397. https://doi.org/10.1016/j.gene.2017.11.039

    Article  CAS  PubMed  Google Scholar 

  12. Satinsky BM, Fortunato CS, Doherty M, Smith CB, Sharma S, Ward ND, Krusche AV, Yager PL, Richey JE, Moran MA, Crump BC (2015) Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome 3:39. https://doi.org/10.1186/s40168-015-0099-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Souza FFC, Mathai PP, Pauliquevis T, Balsanelli E, Pedrosa FO, Souza EM, Baura VA, Monteiro RA, Cruz LM, Souza RAF, Andreae MO, Barbosa CGG, de Angelis IH, Sánchez-Parra B, Pӧhlker C, Weber B, Ruff E, Reis RA, Godoi RHM, Sadowsky MJ, Huergo LF (2021) Influence of seasonality on the aerosol microbiome of the Amazon rainforest. Sci Total Environ 760. https://doi.org/10.1016/j.scitotenv.2020.144092

  14. Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM (2020) Ecological processes shaping bulk soil and rhizosphere microbiome assembly in a long-term Amazon forest-to-agriculture conversion. Microb Ecol 79:110–122. https://doi.org/10.1007/s00248-019-01401-y

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Goss-Souza D, Mendes LW, Borges CD, Rodrigues JLM, Tsai SM (2019) Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiol Ecol 95:1–13. https://doi.org/10.1093/femsec/fiz009

    Article  CAS  Google Scholar 

  16. Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E (2018) Microbial darkmatter investigations: Howmicrobial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol Evol 10:707–715. https://doi.org/10.1093/gbe/evy031

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ióca LP, Nicacio KJ, Berlinck RGS (2018) Natural products from marine invertebrates and microorganisms in Brazil between 2004 and 2017: Still the challenges, more rewards. J Braz Chem Soc 29:998–1031. https://doi.org/10.21577/0103-5053.20180016

    Article  CAS  Google Scholar 

  18. Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-59793-8

    Article  CAS  Google Scholar 

  19. Amorim EAdaF, Castro EJM, da Souza SV, Alves MS, Dias LRL, Melo MHF, da Silva IMA, Villis PCM, Bonfim MRQ, Falcai A, Silva MRC, Monteiro-Neto V, Aliança A, da Silva LCN, de Miranda RdeCM (2020) Antimicrobial potential of Streptomyces ansochromogenes (PB3) isolated from a plant native to the Amazon against pseudomonas aeruginosa. Front Microbiol 11:1–11. https://doi.org/10.3389/fmicb.2020.574693

    Article  Google Scholar 

  20. Dos Santos RS, Albino UB, Paludo KS, Silva SYS, Oliveira MN, Santos DA, Marinho AMR, Marinho PB, Lima TC, Dos Santos GFN, Sequinel G, Silva SC (2021) Extract of bacterial strain isolated from cave in the eastern Amazon induces selective cytotoxicity on tumor line of murine melanoma. Sci Plena 17:1–9. https://doi.org/10.14808/sci.plena.2021.026201

    Article  CAS  Google Scholar 

  21. Zaccarim BR, de Oliveira F, Passarini MRZ, Duarte AWF, Sette LD, Jozala AF, Teixeira MFS, de Carvalho Santos-Ebinuma V (2019) Sequencing and phylogenetic analyses of Talaromyces amestolkiae from Amazon: A producer of natural colorants. Biotechnol Prog 35. https://doi.org/10.1002/btpr.2684

  22. de Souza MF, da Silva ASA, Bon EPS (2018) A novel Trichoderma harzianum strain from the Amazon forest with high cellulolytic capacity. Biocatal Agric Biotechnol 14:183–188. https://doi.org/10.1016/j.bcab.2018.03.008

    Article  Google Scholar 

  23. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Brit J Exp Pathol 10:226

    CAS  Google Scholar 

  24. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180. https://doi.org/10.1038/s41579-018-0121-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI (2020) Microbial natural products in drug discovery. Processes 8:1–19. https://doi.org/10.3390/PR8040470

    Article  Google Scholar 

  26. Sparks TC, Hahn DR, Garizi NV (2017) Natural products, their derivatives, mimics and synthetic equivalents: role in agrochemical discovery. Pest Manag Sci 73:700–715. https://doi.org/10.1002/ps.4458

    Article  CAS  PubMed  Google Scholar 

  27. Sparks TC, Sparks JM, Duke SO (2023) Natural product-based crop protection compounds─origins and future prospects. J Agric Food Chem 71:2259–2269. https://doi.org/10.1021/acs.jafc.2c06938

    Article  CAS  PubMed  Google Scholar 

  28. Sparks TC, Bryant RJ (2022) Impact of natural products on discovery of, and innovation in, crop protection compounds. Pest Manag Sci 78:399–408. https://doi.org/10.1002/ps.6653

    Article  CAS  PubMed  Google Scholar 

  29. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33. https://doi.org/10.1128/CMR.00181-19

  30. Yin YN, Miao J, Shao W, Liu X, Zhao Y, Ma Z (2023) Fungicide resistance: Progress in understanding mechanism, monitoring and management. Phytopathol® 113:707–718. https://doi.org/10.1094/phyto-10-22-0370-kd

    Article  CAS  Google Scholar 

  31. Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Ann Rev Phytopathol 56:161–180

  32. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194. https://doi.org/10.1038/nature10947

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  34. Fukase E, Martin W (2020) Economic growth, convergence, and world food demand and supply. World Dev 132:104954. https://doi.org/10.1016/j.worlddev.2020.104954

    Article  Google Scholar 

  35. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034. https://doi.org/10.1016/j.bmc.2009.01.046

    Article  CAS  PubMed  Google Scholar 

  36. Lorsbach BA, Sparks TC, Cicchillo RM, Garizi NV, Hahn DR, Meyer KG (2019) Natural products: a strategic lead generation approach in crop protection discovery. Pest Manag Sci 75:2301–2309. https://doi.org/10.1002/ps.5350

    Article  CAS  PubMed  Google Scholar 

  37. Santra HK, Banerjee D (2020) Natural products as fungicide and their role in crop protection. In: Singh J, Yadav A (eds) Natural bioactive products in sustainable agriculture. Springer, Singapore, pp 131–219. https://doi.org/10.1007/978-981-15-3024-1_9

  38. Liu C, Xiang W, Han C, Yu Z, Zhang Y, Wang Z, Zhao J, Huang SX, Ma Z, Wen Z (2021) Discovery of frenolicin b as potential agrochemical fungicide for controlling Fusarium head blight on wheat. J Agric Food Chem 69:2108–2117. https://doi.org/10.1021/acs.jafc.0c04277

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Wei Y, Cai B, Zhou D, Qi D, Zhang M, Zhao Y, Li K, Wedge DE, Pan Z, Xie J, Wang W (2022) Discovery of niphimycin C from Streptomyces yongxingensis sp. nov. as a promising agrochemical fungicide for controlling banana Fusarium wilt by destroying the mitochondrial structure and function. J Agric Food Chem 70:12784–12795. https://doi.org/10.1021/acs.jafc.2c02810

    Article  CAS  PubMed  Google Scholar 

  40. Jose PA, Maharshi A, Jha B (2021) Actinobacteria in natural products research: progress and prospects. Microbiol Res 246:126708. https://doi.org/10.1016/j.micres.2021.126708

    Article  CAS  PubMed  Google Scholar 

  41. Al-Shaibani MM, Mohamed RMSR, Sidik NM, El EHA, Al-Gheethi A, Noman E, Al-Mekhlafi NA, Zin NM (2021) Biodiversity of secondary metabolites compounds isolated from phylum actinobacteria and its therapeutic applications. Molecules 26:1–22. https://doi.org/10.3390/molecules26154504

    Article  CAS  Google Scholar 

  42. Lo Giudice A, Fani R (2016) Antimicrobial potential of cold-adapted bacteria and fungi from Polar Regions. In: Rampelotto P (ed) Biotechnology of extremophiles:. Grand challenges in biology and biotechnology, vol 1. Springer, Cham, pp 83–115. https://doi.org/10.1007/978-3-319-13521-2_3

  43. Hamed AA, Soldatou S, Mallique Qader M, Arjunan S, Miranda KJ, Casolari F, Pavesi C, Diyaolu OA, Thissera B, Eshelli M, Belbahri L, Luptakova L, Ibrahim NA, Abdel-Aziz MS, Eid BM, Ghareeb MA, Rateb ME, Ebel R (2020) Screening fungal endophytes derived from under-explored egyptian marine habitats for antimicrobial and antioxidant properties in factionalised textiles. Microorganisms 8:1–19. https://doi.org/10.3390/microorganisms8101617

    Article  CAS  Google Scholar 

  44. Zhao LX, Huang SX, Tang SK, Jiang CL, Duan Y, Beutler JA, Henrich CJ, McMahon JB, Schmid T, Blees JS, Colburn NH, Rajski SR, Shen B (2011) Actinopolysporins A-C and tubercidin as a pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600. J Nat Prod 74:1990–1995. https://doi.org/10.1021/np200603g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rateb ME, Houssen WE, Harrison WTA, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M (2011) Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 74:1965–1971. https://doi.org/10.1021/np200470u

    Article  CAS  PubMed  Google Scholar 

  46. Krell T, Matilla MA (2022) Antimicrobial resistance: progress and challenges in antibiotic discovery and anti-infective therapy. Microb Biotechnol 15:70–78. https://doi.org/10.1111/1751-7915.13945

    Article  PubMed  Google Scholar 

  47. Plackett B (2020) No money for new drugs. Nat Outlook 586:S50–S52

    CAS  Google Scholar 

  48. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya CAP, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson B, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias LF, Ninomiya A, Takada K, Dorrestein PC, Pevzner PA (2017) Dereplication of peptidic natural products through database search of mass spectra. Nat Chem Biol 13:30–37. https://doi.org/10.1038/nchembio.2219

    Article  CAS  PubMed  Google Scholar 

  50. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302. https://doi.org/10.1038/s41592-019-0344-8

    Article  CAS  PubMed  Google Scholar 

  51. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. 46:486–494. https://doi.org/10.1093/nar/gky310

  52. Lee S, Van Santen JA, Farzaneh N, Liu DY, Pye CR, Baumeister TUH, Wong WR, Linington RG (2021) NP Analyst: an open online platform for compound activity mapping. ACS Cent Sci. https://doi.org/10.1021/acscentsci.1c01108

    Article  PubMed  PubMed Central  Google Scholar 

  53. Van Santen JA, Poynton EF, Iskakova D, Mcmann E, Alsup TA, Clark TN, Fergusson CH, Fewer DP, Hughes AH, Mccadden CA, Parra J, Soldatou S, Rudolf JD, Janssen EML, Duncan KR, Linington RG (2022) The natural products atlas 2.0: A database of microbially-derived natural products. Nucleic Acids Res 50:D1317–D1323. https://doi.org/10.1093/nar/gkab941

    Article  CAS  PubMed  Google Scholar 

  54. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C (2021) COCONUT online: Collection of open natural products database. J Cheminforma 13:1–13. https://doi.org/10.1186/s13321-020-00478-9

    Article  Google Scholar 

  55. Klementz D, Döring K, Lucas X, Telukunta KK, Erxleben A, Deubel D, Erber A, Santillana I, Thomas OS, Bechthold A, Günther S (2016) StreptomeDB 2.0 - an extended resource of natural products produced by streptomycetes. Nucleic Acids Res 44:D509–D514. https://doi.org/10.1093/nar/gkv1319

    Article  CAS  PubMed  Google Scholar 

  56. Gallo K, Kemmler E, Goede A, Becker F, Dunkel M, Preissner R, Banerjee P (2023) SuperNatural 3.0—a database of natural products and natural product-based derivatives. Nucleic Acids Res 51:D654–D659. https://doi.org/10.1093/nar/gkac1008

    Article  CAS  PubMed  Google Scholar 

  57. Crüsemann M, O’Neill EC, Larson CB, Melnik AV, Floros DJ, Da Silva RR, Jensen PR, Dorrestein PC, Moore BS (2017) Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols. J Nat Prod 80:588–597. https://doi.org/10.1021/acs.jnatprod.6b00722

    Article  CAS  PubMed  Google Scholar 

  58. Han X, Tang X, Luo X, Sun C, Liu K, Zhang Y, Li P, Li G (2020) Isolation and identification of three new sterigmatocystin derivatives from the fungus Aspergillus versicolor guided by molecular networking approach. Chem Biodivers 17. https://doi.org/10.1002/cbdv.202000208

  59. Pham HT, Lee KH, Jeong E, Woo S, Yu J, Kim WY, Lim YW, Kim KH, Bin KK (2021) Species prioritization based on spectral dissimilarity: a case study of polyporoid fungal species. J Nat Prod 84:298–309. https://doi.org/10.1021/acs.jnatprod.0c00977

    Article  CAS  PubMed  Google Scholar 

  60. De Souza EMC, Da Silva EL, Marinho AMR, Marinho PSB (2016) (4S)-4,8-dihydroxy-1-tetralone and other chemical constituents from pestalotiopsis sp. EJC07, endophytic from Bauhinia guianensis. Anais Acad Bras Cienc 88:29–33. https://doi.org/10.1590/0001-3765201620140378

    Article  CAS  Google Scholar 

  61. Koolen HHF, Soares ER, Da Silva FMA, De Souza AQL, De Medeiros LS, Filho ER, De Almeida RA, Ribeiro IA, Do Ó Pessoa C, De Morais MO, Da Costa PM, De Souza ADL (2012) An antimicrobial diketopiperazine alkaloid and co-metabolites from an endophytic strain of Gliocladium isolated from Strychnos cf. toxifera. Nat Prod Res 26:2013–2019. https://doi.org/10.1080/14786419.2011.639070

    Article  CAS  PubMed  Google Scholar 

  62. Koolen HHF, Soares ER, Da Silva FMA, De Almeida RA, De Souza ADL, De Medeiros LS, Filho ER, De Souza AQL (2012) An antimicrobial alkaloid and other metabolites produced by Penicillium sp. an endophytic fungus isolated from Mauritia flexuosa L. F. Quim Nova 35:771–774. https://doi.org/10.1590/S0100-40422012000400022

    Article  CAS  Google Scholar 

  63. Rodrigues JC, Lima Da Silva W, Ribeiro Da Silva D, Maia CR, Santos Goiabeira CV, Figueiredo Chagas HD, Ayres D’Elia GM, Barbosa Alves GS, Zahner V, Nunez CV, Cristo Fernandes OC (2022) Antimicrobial activity of Aspergillus sp. from the Amazon biome: isolation of kojic acid. Int J Microbiol 1–7. https://doi.org/10.1155/2022/4010018

  64. Pinheiro EAA, Borges FC, Pina JRS, Ferreira LRS, Cordeiro JS, Carvalho JM, Feitosa AO, Campos FR, Barison A, Souza ADL, Marinho PSB, Marinho AMR (2016) Annularins I and J: new metabolites isolated from endophytic fungus Exserohilum rostratum. J Braz Chem Soc 27:1432–1436. https://doi.org/10.5935/0103-5053.20160140

    Article  CAS  Google Scholar 

  65. Vicente Dos Reis G, Abraham WR, Grigoletto DF, De Campos JB, Marcon J, Da Silva JA, Quecine MC, De Azevedo JL, Ferreira AG, De Lira SP (2019) Gloeosporiocide, a new antifungal cyclic peptide from Streptomyces morookaense AM25 isolated from the Amazon bulk soil. FEMS Microbiol Lett 366:1–10. https://doi.org/10.1093/femsle/fnz175

    Article  CAS  Google Scholar 

  66. Peres EG, Souza MP, Sousa TF, Silva CVA da, Barros AL, Silva FMA da, Costa E V., Medeiros LS de, Forim MR, Souza ADL de, Paz WHP, Silva GF da, Souza AQL de, Koolen HHF (2023) Dereplication of sclerotiorin-like azaphilones produced by Penicillium meliponae using LC-MS/MS analysis and molecular networking. J Braz Chem Soc 00:1–15. https://doi.org/10.21577/0103-5053.20230027

  67. Barthélemy M, Elie N, Pellissier L, Wolfender JL, Stien D, Touboul D, Eparvier V (2019) Structural identification of antibacterial lipids from Amazonian palm tree endophytes through the molecular network approach. Int J Mol Sci 20. https://doi.org/10.3390/ijms20082006

  68. Gomes PWP, Barretto H, Reis DE, Veloso A, Albuquerque C, Teixeira A, Braamcamp W, Pamplona S, Silva C, Silva M (2022) Chemical composition of leaves, stem, and roots of Peperomia pellucida (L.) kunth. Molecules 27:1–12

    Article  Google Scholar 

  69. de Souza DP, de Carvalho Gonçalves JF, de Carvalho JC, da Silva KKG, Fernandes AV, de Oliveira Nascimento G, Ramos MV, Koolen HHF, Bezerra DP, Santos AS (2022) Untargeted metabolomics used to describe the chemical composition and antimicrobial effects of the essential oil from the leaves of Guatteria citriodora ducke. Indust Crops Prod 186. https://doi.org/10.1016/j.indcrop.2022.115180

  70. Vásquez-Ocmín PG, Gadea A, Cojean S, Marti G, Pomel S, Van Baelen AC, Ruiz-Vásquez L, Ruiz Mesia W, Figadère B, Ruiz Mesia L, Maciuk A (2021) Metabolomic approach of the antiprotozoal activity of medicinal piper species used in Peruvian Amazon. J Ethnopharmacol 264. https://doi.org/10.1016/j.jep.2020.113262

  71. Lima SMA, Melo JGS, Militão GCG, Lima GMS, do Carmo A, Lima M, Aguiar JS, Araújo RM, Braz-Filho R, Marchand P, Araújo JM, Silva TG (2017) Characterization of the biochemical, physiological, and medicinal properties of Streptomyces hygroscopicus ACTMS-9H isolated from the Amazon (Brazil). Appl Microbiol Biotechnol 101:711–723. https://doi.org/10.1007/s00253-016-7886-9

    Article  CAS  PubMed  Google Scholar 

  72. Bascom-Slack CA, Ma C, Moore E, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Schorn MA, Vekhter D, Boulanger LA, Hess WM, Vargas PN, Strobel GA, Strobel SA (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58:374–383. https://doi.org/10.1007/s00248-009-9494-z

    Article  ADS  PubMed  Google Scholar 

  73. Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, Bohannan BJM, Nüsslein K, Deng Y, Tiedje JM, Pellizari VH (2014) Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol 23:2988–2999. https://doi.org/10.1111/mec.12786

    Article  PubMed  Google Scholar 

  74. de Cassia Silva Bacha D, Santos S, de Alcantara Mendes R, da Silva Rocha CC, Corrêa JA, Cruz JCR, Abrunhosa FA, Oliva PAC (2021) Evaluation of the contamination of the soil and water of an open dump in the Amazon Region, Brazil. Environ Earth Sci 80:1–12. https://doi.org/10.1007/s12665-021-09401-3

    Article  CAS  Google Scholar 

  75. Pedrinho A, Mendes LW, Merloti LF, De Cassia Da Fonseca M, De Souza Cannavan F, Tsai SM (2019) Forest-to-pasture conversion and recovery based on assessment of microbial communities in Eastern Amazon rainforest. FEMS Microbiol Ecol 95:1–10. https://doi.org/10.1093/femsec/fiy236

    Article  CAS  Google Scholar 

  76. Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: Linking diversity to function. Microb Ecol 70:255–265. https://doi.org/10.1007/s00248-014-0559-2

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Fuller SJ, Burke IT, McMillan DGG, Ding W, Stewart DI (2015) Population changes in a community of alkaliphilic iron-reducing bacteria due to changes in the electron acceptor: Implications for bioremediation at alkaline Cr(VI)-contaminated sites. Water Air Soil Pollut 226. https://doi.org/10.1007/s11270-015-2437-z

  78. Silva Junior CHL, Pessôa ACM, Carvalho NS, Reis JBC, Anderson LO, Aragão LEOC (2021) The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat Ecol Evol 5:144–145. https://doi.org/10.1038/s41559-020-01368-x

    Article  PubMed  Google Scholar 

  79. da Cruz DC, Benayas JMR, Ferreira GC, Santos SR, Schwartz G (2021) An overview of forest loss and restoration in the Brazilian Amazon. New For 52:1–16. https://doi.org/10.1007/s11056-020-09777-3

    Article  Google Scholar 

  80. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  81. Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23:127–149. https://doi.org/10.1016/0378-8741(88)90001-3

    Article  CAS  PubMed  Google Scholar 

  82. Ouyang W, Mueller F, Hjelmare M, Lundberg E, Zimmer C (2019) ImJoy: an open-source computational platform for the deep learning era. Nat Methods 16:1199–1200. https://doi.org/10.1038/s41592-019-0627-0

    Article  CAS  PubMed  Google Scholar 

  83. Chambers M, Maclean B, Burke R, Amodei D, Ruderman D, Mallick P (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377.A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–11. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  Google Scholar 

  85. Petras D, Phelan VV, Acharya D, Allen AE, Aron AT, Bandeira N, Bowen BP, Belle-Oudry D, Boecker S, Cummings DA, Deutsch JM, Fahy E, Garg N, Gregor R, Handelsman J, Navarro-Hoyos M, Jarmusch AK, Jarmusch SA, Louie K, Maloney KN, Marty MT, Meijler MM, Mizrahi I, Neve RL, Northen TR, Molina-Santiago C, Panitchpakdi M, Pullman B, Puri AW, Schmid R, Subramaniam S, Thukral M, Vasquez-Castro F, Dorrestein PC, Wang M (2022) GNPS dashboard: collaborative exploration of mass spectrometry data in the web browser. Nat Methods 19:134–136. https://doi.org/10.1038/s41592-021-01339-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schmid R, Petras D, Nothias LF, Wang M, Aron AT, Jagels A, Tsugawa H, Rainer J, Garcia-Aloy M, Dührkop K, Korf A, Pluskal T, Kameník Z, Jarmusch AK, Caraballo-Rodríguez AM, Weldon KC, Nothias-Esposito M, Aksenov AA, Bauermeister A, Albarracin Orio A, Grundmann CO, Vargas F, Koester I, Gauglitz JM, Gentry EC, Hövelmann Y, Kalinina SA, Pendergraft MA, Panitchpakdi M, Tehan R, Le Gouellec A, Aleti G, Mannochio Russo H, Arndt B, Hübner F, Hayen H, Zhi H, Raffatellu M, Prather KA, Aluwihare LI, Böcker S, McPhail KL, Humpf HU, Karst U, Dorrestein PC (2021) Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat Commun 12. https://doi.org/10.1038/s41467-021-23953-9

  87. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD (2007) Integration of biological networks and gene expression data using cytoscape. Nat Protoc 2:2366–2382. https://doi.org/10.1038/nprot.2007.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303.metabolite

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. da Silva RR, Wang M, Nothias LF, van der Hooft JJJ, Caraballo-Rodríguez AM, Fox E, Balunas MJ, Klassen JL, Lopes NP, Dorrestein PC (2018) Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol 14:1–26. https://doi.org/10.1371/journal.pcbi.1006089

    Article  CAS  Google Scholar 

  90. Morehouse NJ, Clark TN, McMann EJ, van Santen JA, Haeckl FPJ, Gray CA, Linington RG (2023) Annotation of natural product compound families using molecular networking topology and structural similarity fingerprinting. Nat Commun 14. https://doi.org/10.1038/s41467-022-35734-z

  91. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, Ewald CJ, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR (2021) Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 18:747–756. https://doi.org/10.1038/s41592-021-01197-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gomes PWP, Medeiros TCdeT, Maimone NM, Leão TF, de Moraes LAB, Bauermeister A (2023) Microbial metabolites annotation by mass spectrometry-based metabolomics. In: Fill TP (ed) Microbial natural products chemistry. Springer, Cham, pp 225–248

    Chapter  Google Scholar 

  94. Brejnrod A, Ernst M, Dworzynski P, Rasmussen LB, Dorrestein PC, van der Hooft JJJ, Arumugam M (2019) Implementations of the chemical structural and compositional similarity metric in R and Python. bioRxiv 11–14. https://doi.org/10.1101/546150

  95. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Bin KK, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46. https://doi.org/10.1007/s00049-016-0227-8

    Article  CAS  Google Scholar 

  97. Bin K, Woo S, Ernst M, Van Der HJJJ, Nothias L, Ricardo R, Dorrestein PC, Hyun S, Lee M (2020) Assessing specialized metabolite diversity of Alnus species by a digitized LC – MS / MS data analysis work flow. Phytochemistry 173:112292. https://doi.org/10.1016/j.phytochem.2020.112292

    Article  CAS  Google Scholar 

  98. Ernst M, Nothias LF, van der Hooft JJJ, Silva RR, Saslis-Lagoudakis CH, Grace OM, Martinez-Swatson K, Hassemer G, Funez LA, Simonsen HT, Medema MH, Staerk D, Nilsson N, Lovato P, Dorrestein PC, Rønsted N (2019) Assessing specialized metabolite diversity in the cosmopolitan plant genus Euphorbia l. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.00846

    Article  CAS  Google Scholar 

  99. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Thompason FL, Hoste B, Eulebroecke V, Swings J (2001) Genomic diversity amongst vibrio isolates from different sources. Syst Appl Microbiol 24:520–538

    Article  Google Scholar 

  101. Katoh K, Rozewicki J, Yamada KD (2018) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  Google Scholar 

  102. Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Bin KK, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya PCA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC (2020) Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15:1954–1991. https://doi.org/10.1038/s41596-020-0317-5

    Article  CAS  PubMed  Google Scholar 

  106. Aron AT, Petras D, Schmid R, Gauglitz JM, Büttel I, Antelo L, Zhi H, Nuccio SP, Saak CC, Malarney KP, Thines E, Dutton RJ, Aluwihare LI, Raffatellu M, Dorrestein PC (2022) Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nat Chem 14:100–109. https://doi.org/10.1038/s41557-021-00803-1

    Article  CAS  PubMed  Google Scholar 

  107. Bortolotto OC, Pomari-Fernandes A, Bueno RCOdeF, Bueno AdeF, da Cruz YKS, Sanzovo A, Ferreira RB (2015) The use of soybean integrated pest management in Brazil: a review. Agron Sci Biotechnol 1:25. https://doi.org/10.33158/asb.2015v1i1p25

    Article  Google Scholar 

  108. Maciel VG, Zortea RB, Menezes Da Silva W, Cybis LFDA, Einloft S, Seferin M (2015) Life cycle Inventory for the agricultural stages of soybean production in the state of Rio Grande do Sul, Brazil. J Clean Prod 93:65–74. https://doi.org/10.1016/j.jclepro.2015.01.016

    Article  Google Scholar 

  109. Picoli MCA, Rorato A, Leitão P, Camara G, Maciel A, Hostert P, Sanches IDA (2020) Impacts of public and private sector policies on soybean and pasture expansion in mato Grosso-Brazil from 2001 to 2017. Land 9:1–15. https://doi.org/10.3390/land9010020

    Article  Google Scholar 

  110. Carvalho WD, Mustin K, Hilário RR, Vasconcelos IM, Eilers V, Fearnside PM (2019) Deforestation control in the Brazilian Amazon: A conservation struggle being lost as agreements and regulations are subverted and bypassed. Perspect Ecol Conserv 17:122–130. https://doi.org/10.1016/j.pecon.2019.06.002

    Article  Google Scholar 

  111. Song XP, Hansen MC, Potapov P, Adusei B, Pickering J, Adami M, Lima A, Zalles V, Stehman SV, Di Bella CM, Conde MC, Copati EJ, Fernandes LB, Hernandez-Serna A, Jantz SM, Pickens AH, Turubanova S, Tyukavina A (2021) Massive soybean expansion in South America since 2000 and implications for conservation. Nat Sustain 4:784–792. https://doi.org/10.1038/s41893-021-00729-z

    Article  Google Scholar 

  112. Viana CM, Freire D, Abrantes P, Rocha J, Pereira P (2022) Agricultural land systems importance for supporting food security and sustainable development goals: a systematic review. Sci Total Environ 806. https://doi.org/10.1016/j.scitotenv.2021.150718

  113. Ajayi-Oyetunde OO, Bradley CA (2018) Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol 67:3–17. https://doi.org/10.1111/ppa.12733

    Article  CAS  Google Scholar 

  114. Vibha (2016) Macrophomina phaseolina: The most destructive soybean fungal pathogen of global concern. In: Kumar P, Gupta V, Tiwari A, Kamle M (eds) Current trends in plant disease diagnostics and management practices. Fungal Biology. Springer, Cham, pp 193–205. https://doi.org/10.1007/978-3-319-27312-9_8

  115. Willbur J, McCaghey M, Kabbage M, Smith DL (2019) An overview of the Sclerotinia sclerotiorum pathosystem in soybean: impact, fungal biology, and current management strategies. Trop Plant Pathol 44:3–11. https://doi.org/10.1007/s40858-018-0250-0

    Article  Google Scholar 

  116. Bolton MD, Thomma BPHJ, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16. https://doi.org/10.1111/j.1364-3703.2005.00316.x

    Article  CAS  PubMed  Google Scholar 

  117. Kim HS, Diers BW (2000) Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop Sci 40:55–61. https://doi.org/10.2135/cropsci2000.40155x

    Article  Google Scholar 

  118. Surbhi K, Singh KP, Singh NK, Aravind T (2021) Assessment of genetic diversity among soybean genotypes differing in response to aerial blight (Rhizoctonia solani Kuhn) using SSR markers. J Phytopathol 169:37–44. https://doi.org/10.1111/jph.12956

    Article  CAS  Google Scholar 

  119. Reznikov S, Chiesa MA, Pardo EM, De Lisi V, Bogado N, González V, Ledesma F, Morandi EN, Daniel Ploper L, Castagnaro AP (2019) Soybean-Macrophomina phaseolina-specific interactions and identification of a novel source of resistance. Phytopathol 109:63–73. https://doi.org/10.1094/PHYTO-08-17-0287-R

    Article  CAS  Google Scholar 

  120. Chang KF, Hwang SF, Ahmed HU, Strelkov SE, Harding MW, Conner RL, McLaren DL, Gossen BD, Turnbull GD (2017) Disease reaction to Rhizoctonia solani and yield losses in soybean. Can J Plant Sci 98:115–124. https://doi.org/10.1139/cjps-2017-0053

    Article  CAS  Google Scholar 

  121. Bellaloui N, Mengistu A, Smith JR, Abbas HK, Accinelli C, Shier WT (2023) Soybean seed sugars: a role in the mechanism of resistance to charcoal rot and potential use as biomarkers in selection. Plants 12:2–3. https://doi.org/10.3390/plants12020392

    Article  CAS  Google Scholar 

  122. Singh BK, Trivedi P, Egidi E, Macdonald CA, Delgado-Baquerizo M (2020) Crop microbiome and sustainable agriculture. Nat Rev Microbiol 18:601–602. https://doi.org/10.1038/s41579-020-00446-y

    Article  CAS  PubMed  Google Scholar 

  123. Traquair JA, Hynes RK, Sabaratnam S, Abbasi PA (2013) Rhizoctonia solani Kühn (anamorphic state of Thanatephorus cucumeris (A.B. Frank) Donk), damping-off, root and crown rot, blight, leaf spot, stem canker and tuber scurf (Ceratobasidiaceae). In: Mason PG (ed) Biological control programmes in Canada 2001-2012. CABI Books, UK, pp 446–453. https://doi.org/10.1079/9781780642574.0446

  124. Zhu GY, Shi XC, Wang SY, Wang B, Laborda P (2022) Antifungal mechanism and efficacy of kojic acid for the control of Sclerotinia sclerotiorum in soybean. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.845698

  125. Macena AMF, Kobori NN, Mascarin GM, Vida JB, Hartman GL (2020) Antagonism of Trichoderma-based biofungicides against Brazilian and North American isolates of Sclerotinia sclerotiorum and growth promotion of soybean. Biocontrol 65:235–246. https://doi.org/10.1007/s10526-019-09976-8

    Article  CAS  Google Scholar 

  126. Hussain T, Khan AA (2020) Determining the antifungal activity and characterization of Bacillus siamensis AMU03 against Macrophomina phaseolina (Tassi) Goid. Indian Phytopathol 73:507–516. https://doi.org/10.1007/s42360-020-00239-6

    Article  Google Scholar 

  127. Hu M, Chen S (2021) Non-target site mechanisms of fungicide resistance in crop pathogens: a review. Microorganisms 9:1–19. https://doi.org/10.3390/microorganisms9030502

    Article  CAS  Google Scholar 

  128. Gong C, Liu M, Liu D, Wang Q, Hasnain A, Zhan X, Pu J, Liang Y, Liu X, Wang X (2022) Status of fungicide resistance and physiological characterization of tebuconazole resistance in Rhizocotonia solani in Sichuan Province, China. Curr Issues Mol Biol 44:4859–4876. https://doi.org/10.3390/cimb44100330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hou YP, Mao XW, Qu XP, Wang JX, Chen CJ, Zhou MG (2018) Molecular and biological characterization of sclerotinia Sclerotiorum resistant to the anilinopyrimidine fungicide cyprodinil. Pestic Biochem Physiol 146:80–89. https://doi.org/10.1016/j.pestbp.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  130. Marquez N, Giachero ML, Declerck S, Ducasse DA (2021) Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.634397

  131. Rangel-Montoya EA, Delgado-Ramírez CS, Sepulveda E, Hernández-Martínez R (2022) Biocontrol of Macrophomina phaseolina using Bacillus amyloliquefaciens strains in cowpea (Vigna unguiculata L.). Agron 12. https://doi.org/10.3390/agronomy12030676

  132. Degani O, Gordani A, Dimant E, Chen A, Rabinovitz O (2023) The cotton charcoal rot causal agent, Macrophomina phaseolina, biological and chemical control. Front Plant Sci 14:1–20. https://doi.org/10.3389/fpls.2023.1272335

    Article  Google Scholar 

  133. Díaz-Díaz M, Bernal-Cabrera A, Trapero A, Medina-Marrero R, Sifontes-Rodríguez S, Cupull-Santana R, García-Bernal M, Agustí-Brisach C (2022) Characterization of actinobacterial strains as potential biocontrol agents against Macrophomina phaseolina and Rhizoctonia solani, the main soil-borne pathogens of Phaseolus vulgaris in Cuba. Plants 11:1–24. https://doi.org/10.3390/plants11050645

    Article  CAS  Google Scholar 

  134. Soltani Nejad M, Samandari Najafabadi N, Aghighi S, Shahidi Bonjar AH, Murtazova KMS, Nakhaev MR, Zargar M (2022) Investigating the potential of Streptomyces spp. in suppression of Rhizoctonia solani (AG1-IA) causing rice sheath blight disease in Northern Iran. Agron 12. https://doi.org/10.3390/agronomy12102292

  135. Ebrahimi-Zarandi M, Bonjar GHS, Riseh RS, El-Shetehy M, Saadoun I, Barka EA (2021) Exploring two Streptomyces species to control Rhizoctonia solani in tomato. Agron 11. https://doi.org/10.3390/agronomy11071384

  136. Rios-Muñiz DE, Evangelista-Martínez Z (2022) Antifungal activity of Streptomyces sp. CACIS-2.15CA, as a potential biocontrol agent, against some soil-borne fungi. Egypt J Biol Pest Control 32. https://doi.org/10.1186/s41938-022-00630-7

  137. Shahid M, Singh BN, Verma S, Choudhary P, Das S, Chakdar H, Murugan K, Goswami SK, Saxena AK (2021) Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz J Microbiol 52:1687–1699. https://doi.org/10.1007/s42770-021-00625-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Elshafie HS, De Martino L, Formisano C, Caputo L, De Feo V, Camele I (2023) Chemical identification of secondary metabolites from rhizospheric Actinomycetes using LC-MS analysis: In silico antifungal evaluation and growth-promoting effects. Plants 12. https://doi.org/10.3390/plants12091869

  139. Manikandan A, Jaivel N, Johnson I, Krishnamoorthy R, Senthilkumar M, Raghu R, Gopal NO, Mukherjee PK, Anandham R (2022) Suppression of Macrophomina root rot, Fusarium wilt and growth promotion of some pulses by antagonistic rhizobacteria. Physiol Mol Plant Pathol 121:101876. https://doi.org/10.1016/j.pmpp.2022.101876

    Article  CAS  Google Scholar 

  140. Ebrahimi-Zarandi M, Saberi Riseh R, Tarkka MT (2022) Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms 10. https://doi.org/10.3390/microorganisms10091739

  141. Manivasagan P, Kang KH, Sivakumar K, Li-Chan ECY, Oh HM, Kim SK (2014) Marine actinobacteria: An important source of bioactive natural products. Environ Toxicol Pharmacol 38:172–188. https://doi.org/10.1016/j.etap.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  142. Liu S, Wang T, Lu Q, Li F, Wu G, Jiang Z, Habden X, Liu L, Zhang X, Lukianov DA, Osterman IA, Sergiev PV, Dontsova OA, Sun C (2021) Bioprospecting of soil-derived actinobacteria along the alar-hotan desert highway in the taklamakan desert. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.604999

  143. Son S, Jang M, Lee B, Lee JS, Hong YS, Kim BY, Ko SK, Jang JH, Ahn JS (2020) Catenulisporidins A and B, 16-membered macrolides of the hygrolidin family produced by the chemically underexplored actinobacterium Catenulispora species. Bioorg Med Chem Lett 30:127005. https://doi.org/10.1016/j.bmcl.2020.127005

    Article  CAS  PubMed  Google Scholar 

  144. Sobolevskaya MP, Kuznetsova TA (2010) Biologically active metabolites of marine actinobacteria. Russ J Bioorg Chem 36:560–573. https://doi.org/10.1134/S1068162010050031

    Article  CAS  Google Scholar 

  145. Shao JW, Fotso S, Li F, Qin S, Laatsch H (2007) Amorphane sesquiterpenes from a marine Streptomyces sp. J Nat Prod 70:304–306. https://doi.org/10.1021/np050358e

    Article  CAS  Google Scholar 

  146. Jiang S, Zhang L, Pei X, Deng F, Hu D, Chen G, Wang C, Hong K, Yao X, Gao H (2017) Chalcomycins from marine-derived Streptomyces sp. and their antimicrobial activities. Mar Drugs 15:8–13. https://doi.org/10.3390/md15060153

    Article  CAS  Google Scholar 

  147. Cheemalamarri C, Batchu R, Thallamapuram NP, Katragadda SB, Shetty PR (2022) A review on hydroxy anthraquinones from bacteria: crosstalk’s of structures and biological activities. Nat Prod Res. https://doi.org/10.1080/14786419.2022.2039920

    Article  PubMed  Google Scholar 

  148. Yan X, Chen JJ, Adhikari A, Yang D, Crnovcic I, Wang N, Chang CY, Rader C, Shen B (2017) Genome mining of Micromonospora yangpuensis dsm 45577 as a producer of an anthraquinone-fused enediyne. Org Lett 19:6192–6195. https://doi.org/10.1021/acs.orglett.7b03120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang L, Zhang J, Ren B, Lu W, Hou C, Wang J, Ma X, Ma R, Liu M, Liu Z, Li JP, Ding K, Dai H, Zhang L, Liu X (2020) Characterization of anti-BCG benz[α]anthraquinones and new siderophores from a Xinjiang desert–isolated rare actinomycete Nocardia sp. XJ31. Appl Microbiol Biotechnol 104:8267–8278. https://doi.org/10.1007/s00253-020-10842-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Song ZM, Zhang JL, Zhou K, Yue LM, Zhang Y, Wang CY, Wang KL, Xu Y (2021) Anthraquinones as potential antibiofilm agents against methicillin-resistant Staphylococcus aureus. Front Microbiol 12:1–16. https://doi.org/10.3389/fmicb.2021.709826

    Article  CAS  Google Scholar 

  151. Yan H, Li Y, Zhang XY, Zhou WY, Feng TJ (2017) A new cytotoxic and anti-fungal C-glycosylated benz[α]anthraquinone from the broth of endophytic Streptomyces blastomycetica strain F4–20. J Antibiot 70:301–303. https://doi.org/10.1038/ja.2016.126

    Article  CAS  Google Scholar 

  152. Jarmusch SA, Lagos-Susaeta D, Diab E, Salazar O, Asenjo JA, Ebel R, Jaspars M (2021) Iron-meditated fungal starvation by lupine rhizosphere-associated and extremotolerant Streptomyces sp. S29 desferrioxamine production. Mol Omics 17:95–107. https://doi.org/10.1039/d0mo00084a

    Article  CAS  PubMed  Google Scholar 

  153. Velasco-Alzate KY, Bauermeister A, Tangerina MMP, Lotufo TMC, Ferreira MJP, Jimenez PC, Padilla G, Lopes NP, Costa-Lotufo LV (2019) Marine bacteria from Rocas Atoll as a rich source of pharmacologically active compounds. Mar Drugs 17:1–16. https://doi.org/10.3390/md17120671

    Article  CAS  Google Scholar 

  154. Zdouc MM, Iorio M, Maffioli SI, Crüsemann M, Donadio S, Sosio M (2021) Planomonospora: a metabolomics perspective on an underexplored actinobacteria genus. J Nat Prod 84:204–219. https://doi.org/10.1021/acs.jnatprod.0c00807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Isono K (1988) Nucleoside antibiotics: structure, biological activity, and biosynthesis. J Antibiot XLI:1711–1739

    Article  Google Scholar 

  156. Chen W, Qi J, Wu P, Wan D, Liu J, Feng X, Deng Z (2016) Natural and engineered biosynthesis of nucleoside antibiotics in actinomycetes. J Ind Microbiol Biotechnol 43:401–417. https://doi.org/10.1007/s10295-015-1636-3

    Article  CAS  PubMed  Google Scholar 

  157. Gong R, Yu L, Qin Y, Price NPJ, He X, Deng Z, Chen W (2021) Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol Adv 46. https://doi.org/10.1016/j.biotechadv.2020.107673

  158. Zhang M, Kong L, Gong R, Iorio M, Donadio S, Deng Z, Sosio M, Chen W (2022) Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments. Microb Cell Fact 21:1–14. https://doi.org/10.1186/s12934-021-01722-z

    Article  CAS  Google Scholar 

  159. Zheng W, Ibáñez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF, Siarheyeva A, Yu W, Brown PJ, Schapira M, Vedadi M, Min J, Luo M (2012) Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. J Am Chem Soc 134:18004–18014. https://doi.org/10.1021/ja307060p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P (2018) Actinobacteria-derived peptide antibiotics since 2000. Peptides 103:48–59. https://doi.org/10.1016/j.peptides.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  161. Hiratsuka T, Itoh N, Seto H, Dairi T (2009) Enzymatic properties of futalosine hydrolase, an enzyme essential to a newly identified menaquinone biosynthetic pathway. Biosci Biotechnol Biochem 73:1137–1141. https://doi.org/10.1271/bbb.80906

    Article  CAS  PubMed  Google Scholar 

  162. Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T (2018) Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot 71:968–970. https://doi.org/10.1038/s41429-018-0087-2

    Article  CAS  Google Scholar 

  163. Muller G, Raymond KN (1984) Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J Bacteriol 160:304–312. https://doi.org/10.1128/jb.160.1.304-312.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Nakouti I, Sihanonth P, Hobbs G (2012) A new approach to isolating siderophore-producing actinobacteria. Lett Appl Microbiol 55:68–72. https://doi.org/10.1111/j.1472-765X.2012.03259.x

    Article  CAS  PubMed  Google Scholar 

  165. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451. https://doi.org/10.1128/mmbr.00012-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Page MGP (2019) The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis 69:S529–S537. https://doi.org/10.1093/cid/ciz825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Codd R, Richardson-Sanchez T, Telfer TJ, Gotsbacher MP (2018) Advances in the chemical biology of desferrioxamine B. ACS Chem Biol 13:11–25. https://doi.org/10.1021/acschembio.7b00851

    Article  CAS  PubMed  Google Scholar 

  168. Wencewicz TA, Miller MJ (2017) Sideromycins as Pathogen-Targeted Antibiotics. In: Fisher J, Mobashery S, Miller M (eds) Antibacterials. Topics in Medicinal Chemistry, vol 26. Springer, Cham, pp 151–183. https://doi.org/10.1007/7355_2017_19

  169. Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010. https://doi.org/10.1093/jxb/erv155

    Article  CAS  PubMed  Google Scholar 

  170. Umezawa H, Aoyagi T, Morishima H, Matsuzaki M, Hamada M, Takeushi T (1970) Pepstatin, a new pepsin inhibitor produced by actinomycetes. J Antibiot XXIII:259–262

    Article  Google Scholar 

  171. Miyano T, Tomiyasu M, Iizuka H, Tomisaka Sh, Takita T, Aoyagi T, Umezawa H (1972) New pepstatins, pepstatins B and C, and pepstatone A, produced by Streptomyces. J Antibiot XXV:489–491

    Article  Google Scholar 

  172. Umezawa H, Miyano T, Murakami T, Takita T, Aoyagi T, Takeuchi T, Nakaganawa H, Morishima H (1973) Hydroxypepstatin, a new pepstatin produced by Streptomyces. J Antibiot XXVI:615–617

    Article  Google Scholar 

  173. Takahashi K (1973) Specific chemical modifications of acid proteases in the presence and absence of pepstatin. J Biochem 73:675–677. https://doi.org/10.1093/oxfordjournals.jbchem.a130129

    Article  CAS  PubMed  Google Scholar 

  174. Cutfield SM, Dodson EJ, Anderson BF, Moody PCE, Marshall CJ, Sullivan PA, Cutfield JF (1995) The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure 3:1261–1271

    Article  CAS  PubMed  Google Scholar 

  175. Palmer RA, Potter BS (2008) X-ray structures and absolute configurations of the antibiotics oligomycins A, B and C: Inhibitors of ATP synthase. J Chem Crystallogr 38:243–253. https://doi.org/10.1007/s10870-008-9317-y

    Article  CAS  Google Scholar 

  176. Kim BS, Moon SS, Hwang BK (1999) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858. https://doi.org/10.1139/b99-044

    Article  CAS  Google Scholar 

  177. Buatong J, Rukachaisirikul V, Sangkanu S, Surup F, Phongpaichit S (2019) Antifungal metabolites from marine-derived streptomyces sp. AMA49 against Pyricularia oryzae. J Pure Appl Microbiol 13:653–665. https://doi.org/10.22207/JPAM.13.2.02

    Article  Google Scholar 

  178. Khebizi N, Boudjella H, Bijani C, Bouras N, Klenk HP, Pont F, Mathieu F, Sabaou N (2018) Oligomycins A and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. J Mycol Med 28:150–160. https://doi.org/10.1016/j.mycmed.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  179. Xiao L, Niu H, Qu T, Zhang X, Du F (2021) Streptomyces sp. FX13 inhibits fungicide-resistant botrytis cinerea in vitro and in vivo by producing oligomycin A Lin. Pestic Biochem Physiol 175:1–10

    Article  Google Scholar 

  180. Karwowski JP, Jackson M, Sunga G, Sheldon P, Poddig JB, Kohl WL, Kadam S (1994) Dorrigocins: novel antifungal antibiotics that change the morphology of ras-transformed NIH/3T3 cells to that of normal cells. I. Taxonomy of the producing organism, fermentation and biological activity. J Antibiot 47:862–869. https://doi.org/10.7164/antibiotics.47.862

    Article  CAS  Google Scholar 

  181. Ju J, Lim SK, Jiang H, Shen B (2005) Migrastatin and dorrigocins are shunt metabolites of iso-migrastatin. J Am Chem Soc 127:1622–1623. https://doi.org/10.1021/ja043808i

    Article  CAS  PubMed  Google Scholar 

  182. Machushynets NV, Elsayed SS, Du C, Siegler MA, de la Cruz M, Genilloud O, Hankemeier T, van Wezel GP (2022) Discovery of actinomycin L, a new member of the actinomycin family of antibiotics. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-022-06736-0

    Article  CAS  Google Scholar 

  183. Ye W, Guo Z (2022) Phenylacetyl pepstatin inhibitors of aspartyl proteases from Streptomyces varsoviensis. J Antibiot 75:519–522. https://doi.org/10.1038/s41429-022-00542-6

    Article  CAS  Google Scholar 

  184. Ding T, Yang LJ, Zhang WD, Shen YH (2019) The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 9:21964–21988. https://doi.org/10.1039/c9ra03579f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee LH, Chan KG, Stach J, Wellington EMH, Goh BH (2018) Editorial: The search for biological active agent(s) from actinobacteria. Front Microbiol 9:1–4. https://doi.org/10.3389/fmicb.2018.00824

    Article  Google Scholar 

  186. Wang P, Wang D, Zhang R, Wang Y, Kong F, Fu P, Zhu W (2021) Novel macrolactams from a deep-sea-derived Streptomyces species. Mar Drugs 19:1–12. https://doi.org/10.3390/md19010013

    Article  CAS  Google Scholar 

  187. Prado-Alonso L, Pérez-Victoria I, Mamierca MG, Montero I, Rioja-Blanco E, Martín J, Reyes F, Méndez C, Salas JA, Olano C (2022) Colibrimycins, novel halogenated hybrid polyketide synthase- nonribosomal peptide synthetase (PKS-NRPS) compounds produced by Streptomyces sp. strain CS147. Appl Environ Microbiol 88:1–23

    Article  Google Scholar 

  188. Tistechok S, Stierhof M, Myronovskyi M, Zapp J, Gromyko O, Luzhetskyy A (2022) Furaquinocins K and L: novel naphthoquinone-based meroterpenoids from Streptomyces sp. Je 1–369. Antibiotics 11:1–12. https://doi.org/10.3390/antibiotics11111587

    Article  CAS  Google Scholar 

  189. Donald L, Pipite A, Subramani R, Owen J, Keyzers RA, Taufa T (2022) Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res 13:418–465. https://doi.org/10.3390/microbiolres13030031

    Article  CAS  Google Scholar 

  190. Liu T, Ren Z, Chunyu WX, Li GD, Chen X, Le ZZT, Sun HB, Wang M, Xie TP, Wang M, Chen JY, Zhou H, Ding ZT, Yin M (2022) Exploration of diverse secondary metabolites from Streptomyces sp. YINM00001, using genome mining and one strain many compounds approach. Front Microbiol 13:1–13. https://doi.org/10.3389/fmicb.2022.831174

    Article  Google Scholar 

  191. Sabido EM, Tenebro CP, Trono DJVL, Vicera CVB, Leonida SFL, Maybay JJWB, Reyes-Salarda R, Amago DS, Aguadera AMV, Octaviano MC, Saludes JP, Dalisay DS (2021) Insights into the variation in bioactivities of closely related Streptomyces strains from marine sediments of the visayan sea against eskape and ovarian cancer. Mar Drugs 19. https://doi.org/10.3390/md1908044r

  192. Tenebro CP, Trono DJVL, Vicera CVB, Sabido EM, Ysulat JA, Macaspac AJM, Tampus KA, Fabrigar TAP, Saludes JP, Dalisay DS (2021) Multiple strain analysis of Streptomyces species from Philippine marine sediments reveals intraspecies heterogeneity in antibiotic activities. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-96886-4

    Article  CAS  Google Scholar 

  193. Yang L, Li X, Wu P, Xue J, Xu L, Li H, Wei X (2020) Streptovertimycins A-H, new fasamycin-type antibiotics produced by a soil-derived Streptomyces morookaense strain. J Antibiot 73:283–289. https://doi.org/10.1038/s41429-020-0277-6

    Article  CAS  Google Scholar 

  194. Feng N, Ye W, Wu P, Huang Y, Xie H, Wei X (2007) Two new antifungal alkaloids produced by Streptoverticillium morookaense. J Antibiot 60:179–183. https://doi.org/10.1038/ja.2007.19

    Article  CAS  Google Scholar 

  195. Park HS, Nah HJ, Kang SH, Choi SS, Kim ES (2021) Screening and isolation of a novel polyene-producing streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Front Bioeng Biotechnol 9:1–10. https://doi.org/10.3389/fbioe.2021.692340

    Article  Google Scholar 

  196. Blumauerová M, Podojil M, Gauze GF, Maksimova TS, Panoš J, Vaněk Z (1980) Effect of cultivation conditions on the activity of the beromycin producer Streptomyces glomeratus 3980 and its spontaneous variants. Folia Microbiol 25:213–218. https://doi.org/10.1007/BF02877340

    Article  Google Scholar 

  197. Kim W, Lee N, Hwang S, Lee Y, Kim J, Cho S, Palsson B, Cho BK (2020) Comparative genomics determines strain-dependent secondary metabolite production in Streptomyces venezuelae strains. Biomolecules 10:1–18. https://doi.org/10.3390/biom10060864

    Article  CAS  Google Scholar 

  198. Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166. https://doi.org/10.1021/acssynbio.6b00202

    Article  CAS  PubMed  Google Scholar 

  199. Tiwari K, Gupta RK (2012) Rare actinomycetes: A potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132. https://doi.org/10.3109/07388551.2011.562482

    Article  CAS  PubMed  Google Scholar 

  200. Morgan JM, Duncan MC, Johnson KS, Diepold A, Lam H, Dupzyk AJ, Martin LR, Wong R, Armitage JP, Linington RG (2017) Piericidin A1 blocks yersinia ysc type III secretion. Host-Microbe Biol 2:1–14

    Google Scholar 

  201. Kang JE, Han JW, Jeon BJ, Kim BS (2016) Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol Res 184:32–41. https://doi.org/10.1016/j.micres.2015.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support (scholarship grant 2022/01529-4 to N.M.M., and grant 2019/17721-9 to Roberto Gomes de Souza Berlinck). A scholarship to N.M.M. and G.A.A-C was also provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001). We cordially acknowledge Roberto Gomes de Souza Berlinck and Fabiana Tessari Rodrigues Martinelli who enabled the UPLC-MS/MS data acquisition, EMBRAPA Soybean for providing the fungal phytopathogenic strains for this study, and the staff members from the Federal University of Amazonas (UFAM) who collaborated with the collection of material for the isolation of microorganisms. The registration code of the microorganism’s strains used herein in the National System for the Management of Genetic Heritage and Associated Traditional Knowledge (SisGen) is A1900BF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Possedente de Lira.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Enderson Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimone, N.M., Apaza-Castillo, G.A., Quecine, M.C. et al. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol (2024). https://doi.org/10.1007/s42770-024-01286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42770-024-01286-1

Keywords

Navigation