Skip to main content
Log in

Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

We surveyed the diversity and capability of producing bioactive compounds from a cultivable fungal community isolated from oligotrophic soil of continental Antarctica. A total of 115 fungal isolates were obtained and identified in 11 taxa of Aspergillus, Debaryomyces, Cladosporium, Pseudogymnoascus, Penicillium and Hypocreales. The fungal community showed low diversity and richness, and high dominance indices. The extracts of Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicillium rubens possess antiviral, antibacterial, antifungal, antitumoral, herbicidal and antiprotozoal activities. Bioactive extracts were examined using 1H NMR spectroscopy and detected the presence of secondary metabolites with chemical shifts. Our results show that the fungi present in cold-oligotrophic soil from Antarctica included few dominant species, which may have important implications for understanding eukaryotic survival in cold-arid oligotrophic soils. We hypothesize that detailed further investigations may provide a greater understanding of the evolution of Antarctic fungi and their relationships with other organisms described in that region. Additionally, different wild pristine bioactive fungal isolates found in continental Antarctic soil may represent a unique source to discover prototype molecules for use in drug and biopesticide discovery studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Azmi OR, Seppelt RD (1998) Fungi of the Windmill Islands, continental Antarctica. Effect of temperature, pH and culture media on the growth of selected microfungi. Polar Biol 18:128–134

    Article  Google Scholar 

  • Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA et al (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betancur-Galvis L, Saez J, Granados H, Salazar A, Ossa J (1999) Antitumor and antiviral activity of Colombian medicinal plant extracts. Mem Inst Oswaldo Cruz 94:531–535

    Article  CAS  PubMed  Google Scholar 

  • Block W (1994) Terrestrial ecosystems: Antarctica. Polar Biol 14:293–300

    Article  Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem? Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Elke Göttlich E et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Marine Gen 2:43–50

    Article  Google Scholar 

  • Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV et al (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107

    Article  Google Scholar 

  • Corry JEL (1987) Relationships of water activity to fungal growth. In: Benchant LR (ed) Food and Beverage Mycology. AVI Pub. Co., Philadelphia, pp 51–99

    Google Scholar 

  • Danheiser RL, Gee SK, Perez JJ (1986) Total synthesis of mycophenolic acid. J Chem Soc 108:806–810

    Article  CAS  Google Scholar 

  • Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094

    Article  CAS  Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from lake Vostok accretion ice. Mycology 101:751–763

    Article  Google Scholar 

  • EMBRAPA (1997) Manual de métodos de análise de solo. Empresa Brasileira de Pesquisa Agropecuária, Rio de Janeiro

    Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with <5 % soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Fletcher LD, Kerry EJ, Weste GM (1985) Microfungi of Mac. Robertson and Enderby Lands Antarctica. Polar Biol 4:81–88

    Article  Google Scholar 

  • Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium a guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174

    Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL et al (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microbial Ecol 67:775–787

    Article  Google Scholar 

  • Gehrke C, Johanson U, Callaghan TV, Chadwick D, Robinson CH (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the sub arctic. Oikos 72:213–222

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya N et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonçalves VN, Vaz ABM, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459–471

    Article  PubMed  Google Scholar 

  • Gonçalves VN, Campos LS, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleont Electron 4:1–9

    Google Scholar 

  • Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG et al (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ireland C, Aalbersberg W, Andersen R, Ayral-Kaloustian S, Berlinck R, Bernan V et al (2003) Anticancer agents from unique natural products sources. Pharm Biol 41:15–38

    Article  CAS  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Netherlands

    Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Summer CTME (eds.) Methods of soil analysis: chemical methods. Part 3. Soil Science Society of America: Madison, pp 869–919

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeast, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT, Barker JS (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian hibiscus flowers. Can J Microbiol 45:172–177

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Cai SX, Li T, Lin ZJ, Zhu TJ, Fang YC et al (2007) Two new metabolites with cytotoxicities from deep-sea fungus, Aspergillus sydowii YH11-2. Arch Pharm Res 30:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648

    Article  Google Scholar 

  • Lorch JM, Lindner DL, Gargas A, Muller LK, Minnis AM, Blehert DSA (2013) Culture-based survey of fungi in soil from bat hibernacula in the eastern United States and its implications for detection of Geomyces destructans, the causal agent of bat white-nose syndrome. Mycology 105:237–252

    Article  CAS  Google Scholar 

  • McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111

    Article  Google Scholar 

  • Mercantini R, Marsella R, Cervellati MC (1989) Keratinophilic fungi isolated from Antarctic soil. Mycopathologia 106:47–52

    Article  CAS  PubMed  Google Scholar 

  • Meyer GH, Morrow MB, Wyss O (1967) Bacteria, fungi and other biota in the vicinity of Mirny Observatory. Antarctic J US 2:248–251

    Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  • Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycology 88:922–933

    Article  Google Scholar 

  • Möller C, Weber G, Dreyfuss MM (1996) Intraspecific diversity in the fungal species Chaunopycnis alba: implications for microbial screening programs. J Ind Microbiol 17:359–372

    Article  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K et al (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Nat Cancer Inst 83:757–766

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

    Google Scholar 

  • Pridgeon JW, Becnel JJ, Clark GG, Linthicum KJ (2009) A high-throughput screening method to identify potential pesticides for mosquito control. J Med Entomol 46:335–341

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Chan Y, Lacap DC, Hyde KD, Pointing SB, Farrell RL (2012) Low-diversity fungal assemblage in an Antarctic Dry Valleys soil. Polar Biol 35:567–574

    Article  Google Scholar 

  • Ren H, Liu R, Chen L, Zhu TJ, Zhu WM, Gu QQ (2010) Two new hetero-spirocyclic γ-lactam derivatives from marine sediment-derived fungus Aspergillus sydowi D 2-6. Arch Pharm Res 33:499–502

    Article  CAS  PubMed  Google Scholar 

  • Romanha AJ, de Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I et al (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  PubMed  Google Scholar 

  • Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic Grass Deschampsia antarctica Desv. (Poaceae). Polar Biol 32:161–167

    Article  Google Scholar 

  • Rosa LH, Vieira MLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol Ecol 73:178–189

    CAS  PubMed  Google Scholar 

  • Rosa LH, Queiroz SCN, Moraes RM, Wang X, Techen N, Pan Z et al (2013) Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic tissue cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae). Symbiosis 60:133–142

    Article  Google Scholar 

  • Rudolph ED, Benninghoff WS (1977) Competitive and adaptive responses of invading versus indigenous biotas in Antarctica ± a plea for organized monitoring. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington, pp 1211–1225

    Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environm Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Santiago IF, Alves TMA, Rabello A, Sales-Júnior PA, Romanha AJ, Zani CL et al (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103

    Article  PubMed  Google Scholar 

  • Scott JA, Wong B, Summerbell RC, Untereiner WA (2008) A survey of Penicillium brevicompactum and P. bialowiezense from indoor environments, with commentary on the taxonomy of the P. brevicompactum group. Can J Bot 86:732–741

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang LI, Ling AP, Koh RY, Chye SM, Voon KG (2012) Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complem Altern Med 12:3

    Article  Google Scholar 

  • Teixeira MC, Jesus SR, Sampaio RB, Pontes CL, Santos WL (2002) A simple and reproducible method to obtain large numbers of axenic amastigotes of different Leishmania species. Parasitol Res 88:963–968

    Article  PubMed  Google Scholar 

  • Tosi S, Casado B, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Trisuwan K, Rukachaisirikul V, Kaewpet M, Phongpaichit S, Hutadilok-Towatana N, Preedanon S et al (2011) Sesquiterpene and xanthone derivatives from the sea fan-derived fungus Aspergillus sydowii PSU-F154. J Nat Prod 74:1663–1667

    Article  CAS  PubMed  Google Scholar 

  • Wedge DE, Kuhajek JM (1998) A microbioassay for fungicide discovery. SAAS Bull Biochem and Biotechn 11:1–7

    CAS  Google Scholar 

  • Wedge DE, Klun JA, Tabanca N, Demirci B, Ozek T, Baser KHC et al (2009) Bioactivity-guided fractionation and GC-MS fingerprinting of Angelica sinensis and A. archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Wicklow DT (1968) Aspergillus fumigatus fresenius isolated from ornithogenic soil collected at Hallett station, Antarctica. Can J Microbiol 14:717–719

    Article  CAS  PubMed  Google Scholar 

  • Yoemans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Comm Soil Sci Plant Anal 19:1467–1476

    Article  Google Scholar 

  • Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M et al (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from CNPq (Processes PROANTAR 407230/2013-0 and INCT Criosfera), FAPEMIG (0050-13), CAPES (23038.003478/2013-92), FINEP (2084/07), PDTIS Fiocruz. The authors thank Solomon Green III and Robert D. Johnson for technical assistance.

Conflict of interest

There is no conflict of interest among the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz H. Rosa.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godinho, V.M., Gonçalves, V.N., Santiago, I.F. et al. Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19, 585–596 (2015). https://doi.org/10.1007/s00792-015-0741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0741-6

Keywords

Navigation