Skip to main content
Log in

Biocontrol Potential of Salt-Tolerant Trichoderma and Hypocrea Isolates for the Management of Tomato Root Rot Under Saline Environment

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

The aim of present study was to decipher the effect of salinity stress on growth and antagonistic potential of Trichoderma and Hypocrea isolates against tomato root rot pathogen (Rhizoctonia solani AG-4) under saline soil conditions. In vitro salinity assays, dual plate confrontation, and volatile metabolite assays were employed to establish the antagonistic potential of Trichoderma and Hypocrea isolates against R. solani AG-4 under varied salt gradients. Potential Trichoderma and Hypocrea isolates were evaluated against tomato root rot disease in greenhouse conditions under salt stress condition. Polymerase chain reaction (PCR) assay was performed to confirm the presence of endochitinase gene in salt-tolerant antagonists. Enzyme and biochemical assays were conducted to define the role of compatible solutes and defense-related enzymes in controlling tomato root rot under saline soil conditions. Trichoderma and Hypocrea isolates were capable to grow and sporulate up to 250 mM NaCl and also showed strong antagonism against R. solani. Enzymatic estimation of hydrolytic enzymes and amplification of endochitinase gene suggested that the test isolates are potent antagonistic agents. Under greenhouse evaluation, Trichoderma and Hypocrea fortified tomato plants showed significant reduction in tomato root rot disease in saline soils over untreated control. Significant increase in total phenol, polyphenol oxidase, peroxidase, β-1,3-glucanase, phenylalanine lyase, chitinase, proline, reducing sugar, and total soluble sugar displayed direct association with salt stress tolerance. Application of salt-tolerant Trichoderma and Hypocrea isolates emerged as a simple, safe, and cheap method for the biological management of tomato root rot under saline condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-Alla MH, Omar SA (1998) Wheat straw and celluolytic fungi application increases nodulation, nodule efficiency and growth of fenugreek (Trigonella foenum-graceum L.) grown in saline soil. Biol Fert Soils 26:58–65

    Article  CAS  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J integr Biol 51(12):1095–1103

    Article  CAS  Google Scholar 

  • Almeida FBR, Cerqueira FM, Silva RN, Ulhoa CJ, Lima AL (2007) Mycoparasitism studies of Trichoderma harzianum isolates against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29:1189–1193

    Article  CAS  PubMed  Google Scholar 

  • AL-Mutawa MM (2003) Effect of salinity on germination and seedling growth of chickpea (Cicer arietinum L.) genotypes. Int J Agric Biol 3:226–229

    Google Scholar 

  • Azarmi R, Hajieghrari B, Giglou A (2011) Effect of Trichoderma isolates on tomato seedling growth and nutrient uptake. Afr J Biotechnol 10:5850–5855

    CAS  Google Scholar 

  • Bae H, Roberts DP, Lims H-S, Strem MD, Park S-C, Ryu C-M, Melnickm R, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Kissoudis C, Yan Z, Visser RGF, Linden G (2018) Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93(4):781–793

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren R, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Boller T, Mauch F (1988) Colorimetric assay for chitinase. Methods Enzymol 61:430–435

    Article  Google Scholar 

  • Cheema HS, Singh B (1990) A user’s manual to CPCS1. Punjab Agricultural University, Ludhiana, pp 40

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem72:1–20

  • Chung H-D, Choi Y-J (2002) Growth responses on varying soil EC and selection of salt-tolerant rootstock of tomato (Lycopersicon spp.). J Korean Soci Hort Sci 43:536–544

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, del Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036

    Article  PubMed  CAS  Google Scholar 

  • Cuartero J, Fernandez-Muñoz R (1999) Tomato and salinity. Sci Hortic 8:83–125

    Google Scholar 

  • De Souza JT, Bailey BA, Pomella AWV, Erbe EF, Murphy CA, Bae H, Hebbar PK (2008) Colonization of cacao seedlings by Trichoderma stromaticum, a mycoparasite of the witches’ broom pathogen, and its influence on plant growth and resistance. Biological control 46:36–45

    Article  Google Scholar 

  • Dickerson DP, Pascholati AE, Hagerman LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxycinnamate:CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fernando WG, Rajesh Ramarathnam D, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB PLANTS, 8(1): plw055.

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goswami SK, Kashyap PL, Awasth S (2019) Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathol:1–10. https://doi.org/10.1007/s42360-019-00174-1

  • Goudarzi A, Banihashemi Z, Maftou M (2011) Effect of salt and water stress on root infection by Macrophomina phaseolina and ion composition in shoot in sorghum. Iranian J Plant Pathol 47:69–83

    Google Scholar 

  • Grover A (2012) Plant chitinases: Genetic diversity and physiological roles. Critical Rev Plant Sci 31(1):57–73

    Article  CAS  Google Scholar 

  • Guan B, Yu J, Chen X, Xie W, Lu Z (2011) Effects of salt stress and nitrogen application on growth and ion accumulation of Suaeda salsa plants. IEEE 8268–8272. https://doi.org/10.1109/RSETE.2011.5964080

  • Guo R, Wang Z, Huang Y, Fan H, Liu Z (2018) Biocontrol potential of saline- or alkaline-tolerant Trichoderma asperellum mutants against three pathogenic fungi under saline or alkaline stress conditions. Brazilian J Microbiol 49S:236–245

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Paul DR (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1). http://palaeo-electronica.org/2001_1/past/issue 1J ) 1.htm.

  • Hammerschmidt R, Nuckels EM, Kue J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber in Colletotrichum lagenarium. Physiol Mol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Haran S, Schikler H, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99:441–446

    Article  CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Jiménez E, Alarcón A, Larsen J, Ferrera-Cerrato R, Cruz-Izquierdo S, Ferrera-Rodríguez MR (2018) Comparative effects of two indole-producing Trichoderma strains and two exogenous phytohormones on the growth of Zea mays L., with or without tryptophan. J Soil Sci Plant Nutr 18(1):188–201

    Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Jacoby RP, Che-Othman MH, Millar AH, Taylor NL (2016) Analysis of the sodium chloride-dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and nonphosphorylating electron transport pathways. Plant Cell Environ 39:823–833

    Article  CAS  PubMed  Google Scholar 

  • Jasrotia P, Kashyap PL, Bhardwaj AK, Kumar S, Singh GP (2018) Scope and applications of nanotechnology for wheat production: A review of recent advances. Wheat Barley Res 10:1–14

    Google Scholar 

  • Karimi E, Sadeghi A, e Dehaji PA, Dalvand Y, Omidvari M, Nezhad MK (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Technol 22(3):333–349

    Article  Google Scholar 

  • Kashyap PL, Sanghera GS, Wani SH, Shafi W, Kumar S, Srivastava AK, Arora DK (2011) Genes of microorganisms: paving way to tailor next generation fungal disease resistant crop plants. Not Sci Biol 3:147–157

    Article  CAS  Google Scholar 

  • Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155

    Article  PubMed  Google Scholar 

  • Keatinge JDH, Lin L-J, Ebert AW, Chen WY, Hughes J'A, Luther GC, Wang J-F, Ravishankar M (2014) Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biol Agric Hortic 30:272–287

    Article  Google Scholar 

  • Khan MH, Singh LB, Panda SK (2002) Changes in antioxidant levels in Oriza sativa L. roots subjected to NaCl-salinity stress. Acta Physiol Plant 24:145–148

    Article  CAS  Google Scholar 

  • Khare E, Singh S, Maheshwari DK, Arora NK (2011) Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition. Curr Microbiol 62:1548–1553

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh R, Kashyap PL, Srivastava AK (2013) Rapid detection and quantification of Alternaria solani in tomato. Sci Hortic 151:184–189

    Article  CAS  Google Scholar 

  • Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2019) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosystems. https://doi.org/10.1080/11263504.2019.1651773

  • Lamichhane JR, Dürr C, Schwanck AA, Robin M-H, Sarthou J-P, Cellier V, Messéan A, Aubertot J-N (2017) Integrated management of damping-off diseases. A review Agron Sustain Dev 37:10

    Article  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Mohan JS (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Berlin, pp 1–32

    Google Scholar 

  • Li J, Liu L, Bai Y, Zhang P, Finkers R, Du Y, Visser RGF, Heusden AW (2011) Seedling salt tolerance in tomato. Euphytica 178:403–414

    Article  Google Scholar 

  • Lorito M, Hayes CK, Zoina A, Scala F, Del Sorbo G, Woo SL, Harman GE (1994) Potential of genes and gene products from Trichoderma sp. and Gliocladium sp. for the development of biological pesticides. Mol Biotechnol 2(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Matroudi S, Zamani MR, Motallebi M (2008) Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Braz J Microbiol 39(3):433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer AM, Harel E, Shaul RB (1965) Assay of catechol oxidase, a critical comparison of methods. Phytochemistry 5:783–789

    Article  Google Scholar 

  • Mohamed HAA, Haggag WM (2006) Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum. Brazilian J Microbiol 37:181–191

  • Mohiddin FA, Khan MR, Khan SM, Bhat BH (2010) Why Trichoderma is considered super hero (super fungus) against the evil parasites? Plant Pathol J 9:92–102

    Article  Google Scholar 

  • Montealegre J, Valderrama L, Sánchez S, Herrera R, Besoain X, Pérez LM (2010) Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants. Electronic J Biotechnol 13:2

    Article  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachmias A, Kaufman Z, Livescu L, Tsror L, Meiri A, Caligari PDS (1993) Effects of salinity and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21(3):245–255. https://doi.org/10.1007/BF02980946

  • Niedziela CE, Nelson PVJ, Willits DH, Peet MM (1993) Short-term salt-shock effects on tomato fruit quality, yield, and vegetative prediction of subsequent fruit quality. J Am Soc Hortic Sc 118:12–16

    Article  Google Scholar 

  • Omar I, O'Neill TM, Rossall S (2006) Biological control of Fusarium crown and root rot of tomato with antagonistic bacteria and integrated control when combined with the fungicide carbendazim. Plant Pathol 55(1):92–99

    Article  CAS  Google Scholar 

  • Oser BL (1979) Hawks physiological chemistry. McGraw Hill, NewYork, pp 702–705

    Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1991) Association of β-1, 3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39

    Article  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Patel VK, Srivastava R, Sharma A, Srivastava AK, Singh S, Srivastava AK, Kashyap PL, Chakdar H, Pandiyan K, Kalra A, Saxena AK (2018) Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and fine-tuning gene expression profiles of related metabolic pathways. Front Microbiol 9:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil HJ, Srivastava AK, Singh DP, Chaudhari BL, Arora DK (2011) Actinomycetes mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Prot 30:1269–1273

    Article  CAS  Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):B72–B88

    Google Scholar 

  • Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW (2016a) Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. SpringerPlus 5:1939

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW (2016b) Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World J Microbiol Biotechnol 32:8

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 239:55–68

    Article  CAS  Google Scholar 

  • Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82

    Article  Google Scholar 

  • Rani S, Sharma MK, Kumar N, Neelam (2019) Impact of salinity and zinc application on growth, physiological and yield traits in wheat. Curr Sci 8(25):1324-1330.

  • Rawat L, Singh,Y, Shukla N, Kumar J (2011) Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant Soil 347:387-400

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Protect 46:442–1467

    Article  CAS  Google Scholar 

  • Regragui A, Rahouti M, Lahlou H (2003) Effect of salinity stress on Verticillium alboatrum: pathogenicity and in vitro production of cellulolytic enzymes. Crypt Mycol 24:167–174

    Google Scholar 

  • Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77(13):4361–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR (2017) Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl 62:805–819

    Article  CAS  Google Scholar 

  • Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, pp 43–53

    Chapter  Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38

    Article  CAS  Google Scholar 

  • Sharma R, Bhat S (2013) Isolation and cloning of ech36 gene from Trichoderma harzanium. Afr J Agric Rs 8(21):2512–2519

    CAS  Google Scholar 

  • Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, Singh RN, Kaushik R, Saxena AK, Sharma AK (2015) Deciphering diversity of salt tolerant bacilli from saline soils of Eastern Indo-gangetic plains of India. Geomicrobiol J 32:170–180

    Article  CAS  Google Scholar 

  • Sharma A, Kashyap PL, Srivastava AK, Bansal YK, Kaushik R (2018) Isolation and characterization of halotolerant bacilli from chickpea (Cicer arietinum L.) rhizosphere for plant growth promotion and biocontrol traits. Eur J Plant Pathol. https://doi.org/10.1007/s10658-018-1592-7

  • Shoresh M, Mastouri F, Harman GE (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Ann Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Singh BN, Singh A, Singh BR, Singh HB (2013) Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. J Appl Microbiol 116:654–666

    Article  PubMed  CAS  Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown root rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386

    Article  CAS  Google Scholar 

  • Sneh B, Burpee L, Ogoshi A (1991) Identification of Rhizoctonia species. APS Press, St. Paul, pp 133

  • Solanki MK, Singh N, Singh RK, Singh P, Srivastava AK, Kumar S, Kashyap PL, Arora DK (2011) Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica 39:71–481

    Article  CAS  Google Scholar 

  • Solanki MK, Kumar S, Panday AK, Srivastava S, Singh RK, Kashyap PL, Srivastava AK, Arora DK (2012a) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Technol 22:203–217

    Article  Google Scholar 

  • Solanki MK, Robert AS, Singh RK, Kumar S, Pandey AK, Srivastava AK, Arora DK (2012b) Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Curr Microbiol 65:330–336

    Article  CAS  PubMed  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK, Arora DK (2014) Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. J Basic Microbiol 54:85–97

    Article  CAS  Google Scholar 

  • Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK (2015) Characterization of antagonistic-potential of two strains and their biocontrol activity against in tomato . J Basic Microb 55(1):82–90

  • Srivastava AK, Singh RN, Kumar S, Kashyap PL, Arora DK (2012) Growth promotion and management of Alternaria leaf spot in chilli by Trichoderma harzianum. International J Innovative Hortic 2:158–163

    Google Scholar 

  • Studholme DJ, Harris B, Cocq KL, Winsbury R et al (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front Plant Sci 4:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Swiecki TJ, MacDonald JD (1991) Soil salinity enhances Phytophthora root rot of tomato but hinders asexual reproduction by Phytophthora parasitica. J Am Soc Hortic Sci 116:471–477

    Article  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahima LA, Ennajahb A, Belkhodja M, Miguel Mulet J (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South Afr J Bot 105:306–312

    Article  CAS  Google Scholar 

  • Triky-dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95:1438–1444

    Article  PubMed  Google Scholar 

  • Van Hoorn JW (1991) Development of soil salinity during germination and early seedling growth and its effect on several crops. Agr Water Manage 20:17–28

    Article  Google Scholar 

  • Vargas Gil S, Pastor S, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and Actinomycetes from soil with culture media. Microbiol Res 164:196–205

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  PubMed  Google Scholar 

  • Yasin NA, Akram W, Khan WU, Ahmad SR, Ahmad A, Ali A (2018) Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environ Sci Pollut Res 25:23236–23250

    Article  CAS  Google Scholar 

  • Ziesli N, Ben-zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem 31:333–339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Lal Kashyap.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashyap, P.L., Solanki, M.K., Kushwaha, P. et al. Biocontrol Potential of Salt-Tolerant Trichoderma and Hypocrea Isolates for the Management of Tomato Root Rot Under Saline Environment. J Soil Sci Plant Nutr 20, 160–176 (2020). https://doi.org/10.1007/s42729-019-00114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-019-00114-y

Keywords

Navigation