Skip to main content
Log in

Pitting corrosion initiated by SiO2–MnO–Cr2O3–Al2O3-based inclusions in a 304 stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The influence of the aluminum content on the pitting corrosion of a 304 stainless steel by a Cl solution was investigated. The number, area, and composition of non-metallic inclusions were modified by the addition of aluminum in the steel, which was responsible for the variation of the corrosion degree of the 304 stainless steel. Inclusions detection, corrosion test, electrochemical test, thermodynamic calculation, and first-principles calculation were performed to evaluate the pitting corrosion of the stainless steel. The initiation of the pitting corrosion by three types of inclusions, including (Mn, Si, Cr, S)O, (Mn, Al, Cr)O, and Al2O3 were in-situ observed. After corroding for 880 min, the corrosion index of (Mn, Si, Cr, S)O, (Mn, Al, Cr)O, and Al2O3 was 0.38%, 0.02%, and 0.00% min−1, respectively. With the increase in aluminum content in the steel, the pitting potential of the stainless steel was 0.131, 0.304, and 0.338 V, respectively, indicating that a higher aluminum content in the steel was beneficial to improving the pitting corrosion resistance of the 304 stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M.M. Pan, X.M. Zhang, Y. Chen, X.B. Su, P. Chen, J. Iron Steel Res. Int. 27 (2020) 1420–1432.

    Article  Google Scholar 

  2. Z. Zhang, Z.F. Hu, L. He, X.B. Zhang, X.X. Fang, B.S. Zhang, Z.X. Ba, J. Iron Steel Res. Int. 27 (2020) 719–731.

    Article  Google Scholar 

  3. Y. Ren, L. Zhang, P.C. Pistorius, Metall. Mater. Trans. B 48 (2017) 2281–2292.

    Article  Google Scholar 

  4. L.W. Xu, H.B. Li, H.B. Zheng, P.C. Lu, H. Feng, S.C. Zhang, W.C. Jiao, Z.H. Jiang, J. Iron Steel Res. Int. 27 (2020) 1466–1475.

    Article  Google Scholar 

  5. L. Zhang, L. Cheng, Y. Ren, J. Zhang, Ceram. Int. 46 (2020) 15674–15685.

    Article  Google Scholar 

  6. Y. Ren, L. Zhang, ISIJ Int. 57 (2017) 68–75.

    Article  Google Scholar 

  7. Y. Ren, L. Zhang, Ironmak. Steelmak. 46 (2019) 558–563.

    Article  Google Scholar 

  8. L. Zhang, Non-metallic inclusions in steels: fundamentals, Metallurgical Industry Press, Beijing, China, 2019.

    Google Scholar 

  9. L. Zhang, Non-metallic inclusions in steels: industrial practice, Metallurgical Industry Press, Beijing, China, 2020.

    Google Scholar 

  10. J. Zhang, H. Ma, J. Zhang, L. Zhang, Iron and Steel 57 (2022) No. 9, 82–94.

    Google Scholar 

  11. S.J. Zheng, Y.J. Wang, B. Zhang, Y.L. Zhu, C. Liu, P. Hu, X.L. Ma, Acta Mater. 58 (2010) 5070–5085.

    Article  Google Scholar 

  12. J.S. Punni, M.J. Cox, Corros. Sci. 52 (2010) 2535–2546.

    Article  Google Scholar 

  13. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50 (2008) 1796–1806.

    Article  Google Scholar 

  14. M. Nishimoto, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 180 (2021) 109222.

    Article  Google Scholar 

  15. K.B. Tayyab, A. Farooq, A. Alvi, A. Nadeem, K. Deen, Int. J. Miner. Metall. Mater. 28 (2021) 440–449.

    Article  Google Scholar 

  16. P.J. Wang, L.W. Ma, X.Q. Cheng, X.G. Li, Int. J. Miner. Metall. Mater. 28 (2021) 1112–1126.

    Article  Google Scholar 

  17. J.L. Guo, T.J. Chen, J. Iron Steel Res. Int. 29 (2022) 819–835.

    Article  Google Scholar 

  18. W.N. Shi, S.F. Yang, J.S. Li, Int. J. Miner. Metall. Mater. 28 (2021) 390–397.

    Article  Google Scholar 

  19. H. Tao, C. Zhou, Y. Zheng, Y. Hong, J. Zheng, L. Zhang, Corros. Sci. 154 (2019) 268–276.

    Article  Google Scholar 

  20. S.T. Kim, S.H. Jeon, I.S. Lee, Y.S. Park, Corros. Sci. 52 (2010) 1897–1904.

    Article  Google Scholar 

  21. S.H. Jeon, S.T. Kim, I.S. Lee, Y.S. Park, Corros. Sci. 52 (2010) 3537–3547.

    Article  Google Scholar 

  22. S.H. Jeon, S.T. Kim, M.S. Choi, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci. 75 (2013) 367–375.

    Article  Google Scholar 

  23. D. Guo, J. Chen, X. Chen, Q. Shi, V.A.M. Cristino, C.T. Kwok, L.M. Tam, H. Qian, D. Zhang, X. Li, Corros. Sci. 193 (2021) 109887.

    Article  Google Scholar 

  24. W.Z. Wei, K.M. Wu, J. Liu, L. Cheng, X. Zhang, J. Iron Steel Res. Int. 28 (2021) 453–463.

    Article  Google Scholar 

  25. Y. Li, C. Ge, Y. Liu, G. Li, X. Dong, Z. Gu, Y. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 586–598.

    Article  Google Scholar 

  26. F. Cai, M. Liu, G. Xu, Iron and Steel 57 (2022) No. 6, 143–149.

    Google Scholar 

  27. K. Guo, Z. Hou, Z. Zeng, D. Guo, Z. Peng, Iron and Steel 57 (2022) No. 11, 87–98.

    Google Scholar 

  28. P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen, Corros. Sci. 47 (2005) 1239–1250.

    Article  Google Scholar 

  29. A. Chiba, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 159 (2012) C341–C350.

    Article  Google Scholar 

  30. N. Shimahashi, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 161 (2014) C494–C500.

    Article  Google Scholar 

  31. A. Chiba, S. Shibukawa, I. Muto, T. Doi, K. Kawano, Y. Sugawara, N. Hara, J. Electrochem. Soc. 162 (2015) C270–C278.

    Article  Google Scholar 

  32. R.S. Lillard, M.A. Kashfipour, W. Niu, J. Electrochem. Soc. 163 (2016) C440–C451.

    Article  Google Scholar 

  33. M. Nishimoto, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 166 (2019) C3081–C3089.

    Article  Google Scholar 

  34. M. Nishimoto, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 176 (2020) 109060.

    Article  Google Scholar 

  35. S. Tokuda, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 183 (2021) 109312.

    Article  Google Scholar 

  36. D.E. Williams, M.R. Kilburn, J. Cliff, G.I.N. Waterhouse, Corros. Sci. 52 (2010) 3702–3716.

    Article  Google Scholar 

  37. S.H. Jeon, S.T. Kim, I.S. Lee, J.H. Park, K.T. Kim, J.S. Kim, Y.S. Park, Corros. Sci. 53 (2011) 1408–1416.

    Article  Google Scholar 

  38. L. Wang, C.F. Dong, C. Man, Y.B. Hu, Q. Yu, X.G. Li, Int. J. Miner. Metall. Mater. 28 (2021) 754–773.

    Article  Google Scholar 

  39. X. He, X.Y. Lü, Z.W. Wu, S.H. Li, Q.L. Yong, J.X. Liang, J. Su, L.X. Zhou, J. Li, K.Y. Zhao, J. Iron Steel Res. Int. 28 (2021) 629–640.

    Article  Google Scholar 

  40. Z. Zhang, Y. Gu, R. Yuan, H. Wu, Iron and Steel 56 (2021) No. 5, 98–104.

    Google Scholar 

  41. N. Zhou, C. She, F. Chai, X. Luo, J. Li, Iron and Steel 57 (2022) No. 7, 137–145.

    Google Scholar 

  42. D.E. Williams, Y.Y. Zhu, J. Electrochem. Soc. 147 (2000) 1763.

    Article  Google Scholar 

  43. A. Chiba, I. Muto, Y. Sugawara, N. Hara, J. Electrochem. Soc. 160 (2013) C511–C520.

    Article  Google Scholar 

  44. S. Tokuda, I. Muto, Y. Sugawara, N. Hara, Corros. Sci. 167 (2020) 108506.

    Article  Google Scholar 

  45. W. Lv, ISIJ Int. 59 (2019) 1276–1286.

    Article  Google Scholar 

  46. C.Y. Zhu, P.J. Chen, G.Q. Li, X.Y. Luo, W. Zheng, ISIJ Int. 56 (2016) 1368–1377.

    Article  Google Scholar 

  47. E. Maxl, H. Hiebler, H. Presslinger, K. Antlinger, ISIJ Int. 33 (1993) 88–97.

    Article  Google Scholar 

  48. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, Q. Shan, ISIJ Int. 53 (2013) 1401–1410.

    Article  Google Scholar 

  49. H.J. Lu, H. Wu, N. Zou, X.G. Lu, Y.L. He, D. Morgan, Acta Mater. 154 (2018) 161–171.

    Article  Google Scholar 

  50. K. Wang, S.L. Shang, Y. Wang, Z.K. Liu, F. Liu, Acta Mater. 147 (2018) 261–276.

    Article  Google Scholar 

  51. M. Tang, K. Wu, J. Liu, L. Cheng, X. Zhang, Y. Chen, Materials 12 (2019) 3359.

    Article  Google Scholar 

  52. Y. Hou, G. Xiong, L. Liu, G. Li, N. Moelans, M. Guo, Scripta Mater. 177 (2020) 151–156.

    Article  Google Scholar 

  53. J. Zhang, C. Su, X. Chen, H. Liu, L. Zhang, Mater. Today Commun. 27 (2021) 102204.

    Article  Google Scholar 

  54. M. Wakoh, T. Sawai, S. Mizoguchi, ISIJ Int. 36 (1996) 1014–1021.

    Article  Google Scholar 

  55. Y. Chi, Z. Deng, M. Zhu, Steel Res. Int. 88 (2017) 1600218.

    Article  Google Scholar 

  56. C. Liu, Z. Jiang, J. Zhao, X. Cheng, Z. Liu, D. Zhang, X. Li, Corros. Sci. 166 (2020) 108463.

    Article  Google Scholar 

  57. A. Chiba, I. Muto, Y. Sugawara, N. Hara, ECS Trans. 50 (2013) 15–23.

    Article  Google Scholar 

  58. G.S. Eklund, J. Electrochem. Soc. 121 (1974) 467.

    Article  Google Scholar 

  59. D.E. Williams, T.F. Mohiuddin, Y.Y. Zhu, J. Electrochem. Soc. 145 (1998) 2664–2672.

    Article  Google Scholar 

  60. M.P. Ryan, D.E. Williams, R.J. Chater, B.M. Hutton, D.S. McPhail, Nature 415 (2002) 770–774.

    Article  Google Scholar 

  61. A. Grajcar, A. Plachcinska, Mater. Tehnol. 50 (2016) 713–718.

    Article  Google Scholar 

  62. M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80 (1996) 2234–2252.

    Article  Google Scholar 

  63. T. Siegrist, C. Kloc, R.A. Laudise, H.E. Katz, R.C. Haddon, Adv. Mater. 10 (1998) 379–382.

    Article  Google Scholar 

  64. F. Fabbri, D. Cavalcoli, A. Cavallini, Acta Mater. 60 (2012) 3350–3354.

    Article  Google Scholar 

  65. C. Yang, B. Feng, J. Wei, E. Tochigi, S. Ishihara, N. Shibata, Y. Ikuhara, Acta Mater. 201 (2020) 488–493.

    Article  Google Scholar 

  66. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, B.H. Koo, Acta Mater. 60 (2012) 5190–5196.

    Article  Google Scholar 

  67. S.Y. Kim, H.C. Lee, Y. Nam, Y. Yun, S.H. Lee, D.H. Kim, J.H. Noh, J.H. Lee, D.H. Kim, S. Lee, Y.W. Heo, Acta Mater. 181 (2019) 460–469.

    Article  Google Scholar 

  68. A.C. Switendick, Int. J. Quantum Chem. 5 (2009) 459–470.

    Article  Google Scholar 

  69. M. Qiu, S. He, J. Appl. Phys. 87 (2000) 8268–8275.

    Article  Google Scholar 

  70. G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169–11186.

    Article  Google Scholar 

  71. P.E. Blöchl, Phys. Rev. B 50 (1994) 17953–17979.

    Article  Google Scholar 

  72. J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1981) 5048–5079.

    Article  Google Scholar 

  73. A.J. Samin, C.D. Taylor, Corros. Sci. 134 (2018) 103–111.

    Article  Google Scholar 

  74. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188–5192.

    Article  MathSciNet  Google Scholar 

  75. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158 (2019) 108081.

    Article  Google Scholar 

  76. G. Bergerhoff, I.D. Brown, Acta Crystallogr. Sect. A Found. Crystallogr. 37 (1981) C342.

    Article  Google Scholar 

  77. C. Liu, R.I. Revilla, D. Zhang, Z. Liu, A. Lutz, F. Zhang, T. Zhao, H. Ma, X. Li, H. Terryn, Corros. Sci. 138 (2018) 96–104.

    Article  Google Scholar 

  78. R. Avci, B.H. Davis, M.L. Wolfenden, I.B. Beech, K. Lucas, D. Paul, Corros. Sci. 76 (2013) 267–274.

    Article  Google Scholar 

  79. Y.T. Zhou, Y.J. Wang, S.J. Zheng, B. Zhang, X.L. Ma, Philos. Mag. 95 (2015) 2365–2375.

    Article  Google Scholar 

  80. C. Larignon, J. Alexis, E. Andrieu, L. Lacroix, G. Odemer, C. Blanc, Scripta Mater. 68 (2013) 479–482.

    Article  Google Scholar 

  81. Z. Hua, S. Zhu, B. An, T. Iijima, C. Gu, J. Zheng, Scripta Mater. 162 (2019) 219–222.

    Article  Google Scholar 

  82. J. Yu, X. Lin, J. Wang, J. Chen, W. Huang, Appl. Surf. Sci. 255 (2009) 9032–9039.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation of China (Grant No. U22A20171), and the High Steel Center (HSC) at North China University of Technology, Yanshan University, and University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Li-feng Zhang.

Ethics declarations

Conflict of interest

Ying Ren and Li-feng Zhang are youth editorial board member and  editorial board member, respectively, for Journal of Iron and Steel Research International and were not involved in the editorial review or the decision to publish this article. The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Jz., Li, S., Zhang, J. et al. Pitting corrosion initiated by SiO2–MnO–Cr2O3–Al2O3-based inclusions in a 304 stainless steel. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-023-01101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01101-5

Keywords

Navigation