Skip to main content
Log in

Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effects of H2SO4 concentration and current in electrochemical corrosion on surface layer softening or plasticizing of Q235 steel bar and their effects on subsequent electrochemical cold drawing (ECD) were investigated. The results indicate that the electrochemical corrosion can soften or plasticize the surface layer of Q235 steel bar and then make the subsequent ECD be conducted more easily. The softening degree and thickness of the surface layer are continuously enhanced with increasing corrosion rate, i.e., increasing H2SO4 concentration or current, due to the generation of more vacancy clusters in deeper regions of surface layer. These vacancy clusters then relax dislocations through being absorbed during ECD, and the formation and movement of additional dislocation flux are thereby enhanced, resulting in the further obvious decrease in the drawing force. It is also due to the enhanced formation and movement of additional dislocation flux that the dislocation density and thus the hardness of the surface layer are decreased, as well as that the texture structure is weakened. These behaviors are enhanced as the corrosion rate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, F. Yan, Mater. Sci. Technol. 33 (2017) 244–254.

    Article  Google Scholar 

  2. N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Mater. Des. 60 (2014) 540–547.

    Article  Google Scholar 

  3. K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Mater. Sci. Eng. A 733 (2018) 393–407.

    Article  Google Scholar 

  4. S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, A. Sarban, Mater. Sci. Eng. A 346 (2003) 101–107.

    Article  Google Scholar 

  5. H.L. Seet, X.P. Li, K.S. Lee, L.Q. Liu, J. Mater. Process. Technol. 192–193 (2007) 350–354.

    Article  Google Scholar 

  6. L.L. Li, T.J. Chen, S.Q. Zhang, F.Y Yan, J. Mater. Process. Technol. 240 (2017) 33–41.

  7. M. Murakawa, M. Jin, J. Mater. Process. Technol. 113 (2001) 81–86.

    Article  Google Scholar 

  8. S. Liu, X.B. Shan, K. Guo, Y.C. Yang, T. Xie, Ultrasonics 83 (2018) 60–67.

    Article  Google Scholar 

  9. K. Siegert, A. Möck, J. Mater. Process. Technol. 60 (1996) 657–660.

    Article  Google Scholar 

  10. M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai, C.H. Hung, J. Mater. Process. Technol. 140 (2003) 30–35.

    Article  Google Scholar 

  11. J. Petruzelka, J. Sarmanova, A. Sarman, J. Mater. Process. Technol. 60 (1996) 661–668.

    Article  Google Scholar 

  12. V.L.A. Silveira, R.A.F.O. Fortes, W.A. Mannheimer, Scripta Metall. 17 (1983) 1381–1382.

    Article  Google Scholar 

  13. G.Y. Tang, M.X. Zheng, Y.H. Zhu, J. Zhang, W. Fang, Q. Li, J. Mater. Process. Technol. 84 (1998) 268–270.

    Article  Google Scholar 

  14. G.Y. Tang, J. Zhang, Y.J. Yan, H.H. Zhou, W. Fang, J. Mater. Process. Technol. 137 (2003) 96–99.

    Article  Google Scholar 

  15. E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Co., Pte. Ltd., New Jersey, USA, 1994.

    Book  Google Scholar 

  16. T. Magnin, A. Chambreuil, B. Bayle, Acta Mater. 44 (1996) 1457–1470.

    Article  Google Scholar 

  17. D.A. Jones, Corrosion 52 (1996) 356–362.

    Article  Google Scholar 

  18. H. Guo, B. Lu, J. Luo, Electrochem. Commun. 8 (2006) 1092–1098.

    Article  Google Scholar 

  19. E. Gutman, Surf. Coat. Technol. 67 (1994) 133–136.

    Article  Google Scholar 

  20. Y.B. Unigovski, E.M. Gutman, Z. Koren, B. Borohov, J. Met. Mater. Miner. 22 (2012) 137–140.

    Google Scholar 

  21. E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, Y. Liang, Appl. Surf. Sci. 388 (2016) 49–56.

    Article  Google Scholar 

  22. T.J. Chen, B.Q. Yang, B. Li, J.L. Guo, P. Zhang, X.Z. Cao, J. Mater. Process. Technol. 275 (2020) 116375.

  23. K. Lian, E.I. Meletis, Corrosion 52 (1996) 347–355.

    Article  Google Scholar 

  24. B.T. Lu, J.L. Luo, P.R. Norton, Corros. Sci. 52 (2010) 1787–1795.

    Article  Google Scholar 

  25. Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, X. Wang, Mater. Sci. Eng. A. 677 (2016) 259–273.

    Article  Google Scholar 

  26. X.Z. Zhang, T.J. Chen, Mater. Des. 191 (2020) 108695.

  27. X.M. Deng, L.L. Xie, L.M. Yan, in: X.M. Deng, L.L. Xie, L.M. Yan (Eds.), Metal extrusion and drawing engineering, Hefei University of Technology Press, Hefei, China, 2014.

  28. Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G. de S. Pimenta, L.B.S. Marques, Corros. Sci. 58 (2012) 1–11.

  29. S. Sahu, M. Palaniappa, S.N. Paul, M. Roy, Mater. Lett. 64 (2010) 12–14.

    Article  Google Scholar 

  30. Z. Shi, M. Liu, A. Atrens, Corros. Sci. 52 (2010) 579–588.

    Article  Google Scholar 

  31. X.G. Zhang, Electrochemical Thermodynamics and Kinetics, Corrosion and Electrochemistry of Zinc, Springer, Boston, MA, USA, 1996.

  32. K. Elayaperumal, V.S. Raja, Corrosion Failures, John Wiley & Sons, New Jersey, USA, 2015.

    Book  Google Scholar 

  33. E. Detsi, M. van de Schootbrugge, S. Punzhin, P.R. Onck, J.T.M. De Hosson, Scripta Mater. 64 (2011) 319–322.

    Article  Google Scholar 

  34. R.W. Revie, H.H. Uhlig, Acta Metall. 22 (1974) 619–627.

    Article  Google Scholar 

  35. A.J. Denny, F.J. Alan, Scripta Metall. Mater. 29 (1993) 701–706.

    Article  Google Scholar 

  36. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66 (1994) 841–897.

    Article  Google Scholar 

  37. K. Petersen, N. Thrane, R.M.J. Cotterill, Philos. Mag. 29 (1974) 9–23.

    Article  Google Scholar 

  38. J. He, H.P. Zheng, Acta Phys. Sin. 51 (2002) 2580–2588.

    Article  Google Scholar 

  39. H.W. Pickering, C. Wagner, J. Electrochem. Soc. 114 (1967) 698–706.

    Article  Google Scholar 

  40. Y. Xu, M.Y. Tan, Corros. Sci. 151 (2019) 163–174.

    Article  Google Scholar 

  41. Y.Z. Xu, L. Liu, Q.P. Zhou, X.N. Wang, Y. Huang, Wear 442–443 (2020) 203151.

  42. F. Fang, Y.F. Zhao, L.C. Zhou, X.J. Hu, Z.H. Xie, J. Jiang, Mater. Sci. Eng. A. 618 (2014) 505–510.

    Article  Google Scholar 

  43. R.W. Revie, Prog. Surf. Sci. 14 (1983) 53–111.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express many thanks for the National Natural Science Foundation of China (Grant No. 51971105) for financial support, and P. Zhang and X.Z. Cao (the Positron Research Platform, Institute of High Energy Physics, CAS, Beijing 100049, China) for conducting the analysis of positron annihilation life spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.J. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, T. Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar. J. Iron Steel Res. Int. 29, 819–835 (2022). https://doi.org/10.1007/s42243-021-00675-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00675-2

Keywords

Navigation