Skip to main content
Log in

Effects of nitrogen content on pitting corrosion resistance of non-magnetic drill collar steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

High-nitrogen (N) austenitic stainless steel (Cr–Mn–N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to 0.86 wt.%) on the pitting corrosion behavior of the experimental non-magnetic drill collar steel were investigated using the electrochemical tests and immersion tests. Besides, X-ray photoelectron spectroscopy was used to analyze the constitution of the passive film. The results show that with the enhancement of N content from 0.63 to 0.86 wt.%, the metastable pitting corrosion sensitivity of the tested materials in 3.5 wt.% NaCl solution decreased and the pitting corrosion resistance increased. Meanwhile, the corrosion rate in 6 wt.% FeCl3 solution at 30 °C decreased from 10.40 to 4.93 mm/a. On the other hand, nitrogen was concentrated in the form of ammonia (NH4+ and NH3) on the outermost surface of the passive films. The contents of Cr2O3 and Fe2O3 raised in the passive films, together with the content of CrN, at metal/film interface increased as N content increased from 0.63 to 0.86 wt.%, which facilitated protective ability of the passive films, thus contributing to higher pitting corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.J. Knight, F.P. Brennan, Eng. Fail. Anal. 6 (1999) 301–319.

    Article  Google Scholar 

  2. J. Edwards, F. Pernet, S.V.J. Jakeman, Geoexploration 17 (1979) 229–241.

    Article  Google Scholar 

  3. Z. Zhong, Y. Li, Y. Liu, L. Bao, Z. Tian, Eng. Fail. Anal. 105 (2019) 727–735.

    Article  Google Scholar 

  4. N.A. Mariano, D. Spinelli, Mater. Sci. Eng. A 385 (2004) 212–219.

    Article  Google Scholar 

  5. Y.P. Lang, H.P. Qu, H.T. Chen, Y.Q. Weng, J. Iron Steel Res. Int. 22 (2015) 91–98.

    Article  Google Scholar 

  6. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang, G.W. Fan, G.P. Li, Metall. Mater. Trans. B 48 (2017) 2493–2503.

    Article  Google Scholar 

  7. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Mater. Charact. 152 (2019) 141–150.

    Article  Google Scholar 

  8. G. Saller, H. Aigner, Mater. Manuf. Process. 14 (2004) 41–49.

    Article  Google Scholar 

  9. Y. Fu, X. Wu, E. Han, W. Ke, K. Yang, Z. Jiang, Electrochim. Acta 54 (2009) 4005–4014.

    Article  Google Scholar 

  10. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, L. Li, P.D. Han, R.D.K. Misra, J.Z. Li, Mater. Des. 84 (2015) 291–299.

    Article  Google Scholar 

  11. Z. Jiang, H. Feng, H. Li, H. Zhu, S. Zhang, B. Zhang, Y. Han, T. Zhang, D. Xu, Materials 10 (2017) 861.

    Article  Google Scholar 

  12. H. Li, E. Zhou, Y. Ren, D. Zhang, D. Xu, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Corros. Sci. 111 (2016) 811–821.

    Article  Google Scholar 

  13. G. Lothongkum, P. Wongpanya, S. Morito, T. Furuhara, T. Maki, Corros. Sci. 48 (2006) 137–153.

    Article  Google Scholar 

  14. W.C. Jiao, H.B. Li, J. Dai, H. Feng, Z.H. Jiang, T. Zhang, D.K. Xu, H.C. Zhu, S.C. Zhang, J. Mater. Sci. Technol. 35 (2019) 2357–2364.

    Article  Google Scholar 

  15. S.L. Lv, Z.M. Yang, B. Zhang, J. Chen, Y. Chen, X.B. Li, J. Iron Steel Res. Int. 25 (2018) 943–953.

    Article  Google Scholar 

  16. H.F. Xu, G.L. Wu, C. Wang, J. Li, W.Q. Cao, J. Iron Steel Res. Int. 25 (2018) 954–967.

    Article  Google Scholar 

  17. J.B. Lee, S.I. Yoon, Mater. Chem. Phys. 122 (2010) 194–199.

    Article  Google Scholar 

  18. S. Ningshen, U. Kamachi Mudali, V.K. Mittal, H.S. Khatak, Corros. Sci. 49 (2007) 481–496.

  19. H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, Z. Chen, Corros. Sci. 144 (2018) 288–300.

    Article  Google Scholar 

  20. R.F.A. Jargelius-Pettersson, Corros. Sci. 41 (1999) 1639–1664.

    Article  Google Scholar 

  21. H. Feng, H. Li, X. Wu, Z. Jiang, S. Zhao, T. Zhang, D. Xu, S. Zhang, H. Zhu, B. Zhang, M. Yang, J. Mater. Sci. Technol. 34 (2018) 1781–1790.

    Article  Google Scholar 

  22. Y. Zhao, X. Li, C. Zhang, T. Zhang, J. Xie, G. Zeng, D. Xu, F. Wang, Corros. Sci. 145 (2018) 307–319.

    Article  Google Scholar 

  23. Database for surface spectroscopies as XPS, AES and UPS, 2017. http://www.lasurface.com. (Accessed: 2017-10-10).

  24. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater. Sci. Technol. 35 (2019) 1499–1507.

    Article  Google Scholar 

  25. X.Y. Li, C.H. Fan, Q.L. Wu, L.H. Dong, Y.S. Yin, C.J. Wang, J.X. Liang, J. Iron Steel Res. Int. 24 (2017) 1238–1247.

    Article  Google Scholar 

  26. G.S. Frankel, J. Electrochem. Soc. 145 (1998) 2186–2198.

    Article  Google Scholar 

  27. M. Tang, J. Wang, Z. Feng, G. Li, Z. Yan, R. Zhang, Ceram. Int. 45 (2019) 16918–16926.

    Article  Google Scholar 

  28. S. Fajardo, I. Llorente, J. JimÉNez, J.M. Bastidas, D.M. Bastidas, Corros. Sci. 154 (2019) 246–253.

    Article  Google Scholar 

  29. H. Li, Z. Jiang, H. Feng, Q. Wang, W. Zhang, G. Fan, G. Li, L. Wang, Int. J. Electrochem. Sci. 10 (2015) 1616–1631.

    Google Scholar 

  30. Y.X. Qiao, Y.G. Zheng, W. Ke, P.C. Okafor, Corros. Sci. 51 (2009) 979–986.

    Article  Google Scholar 

  31. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, M. Santamaria, Electrochim. Acta 273 (2018) 412–423.

    Article  Google Scholar 

  32. C.R. Clayton, G.P. Halada, J.R. Kearns, Mater. Sci. Eng. A 198 (1995) 135–144.

    Article  Google Scholar 

  33. Y. Yang, X. Ning, H. Tang, L. Guo, H. Liu, Appl. Surf. Sci. 320 (2014) 274–280.

    Article  Google Scholar 

  34. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158 (2019) 108081.

    Article  Google Scholar 

  35. H.B. Li, Z.H. Jiang, Y. Cao, Z.R. Zhang, Int. J. Miner. Metall. Mater. 16 (2009) 387–392.

    Article  Google Scholar 

  36. C.O.A. Olsson, Corros. Sci. 37 (1995) 467–479.

    Article  Google Scholar 

  37. H.J. Grabke, ISIJ Int. 36 (1996) 777–786.

    Article  Google Scholar 

  38. R.D. Willenbruch, C.R. Clayton, M. Oversluizen, D. Kim, Y. Lu, Corros. Sci. 31 (1990) 179–190.

    Article  Google Scholar 

  39. C.R. Clayton, Y.C. Lu, J. Electrochem. Soc. 133 (1986) 2465–2473.

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Natural Science Foundation of China (Grant Nos. U1960203, 51774074 and 51434004), Shanxi Municipal Major Science and Technology Project (Grant No. 20181101014), Fundamental Research Funds for the Central Universities (Grant Nos. N172512033 and N2024005-4), Talent Project of Revitalizing Liaoning (XLYC1902046) and State Key Laboratory of Metal Material for Marine Equipment and Application (Grant No. HG-SKL (2019) 13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-bing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Lw., Li, Hb., Zheng, Hb. et al. Effects of nitrogen content on pitting corrosion resistance of non-magnetic drill collar steel. J. Iron Steel Res. Int. 27, 1466–1475 (2020). https://doi.org/10.1007/s42243-020-00428-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00428-7

Keywords

Navigation