Skip to main content
Log in

Transformation of Oxide Inclusions in Type 304 Stainless Steels during Heat Treatment

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Heat treatment of Type 304 stainless steel in the range of 1273 K (1000 °C) to 1473 K (1200 °C) can transform manganese silicate inclusions to manganese chromite (spinel) inclusions. During heat treatment, Cr reacts with manganese silicate to form spinel. The transformation rate of inclusions depends strongly on both temperature [in the range of 1273 K to 1473 K (1000 °C to 1200 °C)] and inclusion size. A kinetic model, developed using FactSage macros, showed that these effects agree quantitatively with diffusion-controlled transformation. A simplified analytical model, which can be used for rapid calculations, predicts similar transformation kinetics, in agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.Y. Ha, C.J. Park and H.S. Kwon: Corrosion Science, 2007, vol. 49, pp. 1266-75.

    Article  Google Scholar 

  2. A. Chiba, I. Muto, Y. Sugawara and N. Hara: Corrosion Science, 2016, vol. 106, pp. 25-34.

    Article  Google Scholar 

  3. J.H. Park and H. Todoroki: ISIJ International, 2010, vol. 50, pp. 1333-46.

    Article  Google Scholar 

  4. L. Zhang and B.G. Thomas: ISIJ International, 2003, vol. 43, pp. 271-91.

    Article  Google Scholar 

  5. L. Zhang and B.G. Thomas: Metallurgical and Materials Transactions B, 2006, vol. 37, pp. 733-61.

    Article  Google Scholar 

  6. T. Hou, W. Zheng, Z. Wu, G. Li, N. Moelans, M. Guo and S. Khan: Acta Materialia, 2016, vol. 118, pp. 8-16.

    Article  Google Scholar 

  7. D. Zhang, H. Terasaki and Y.-i. Komizo: Acta Materialia, 2010, vol. 58, pp. 1369-78.

    Article  Google Scholar 

  8. H.S. Kim, C.-H. Chang and H.-G. Lee: Scripta Materialia, 2005, vol. 53, pp. 1253-58.

    Article  Google Scholar 

  9. K. Takano, R. Nakao, S. Fukumoto, T. Tsuchiyama and S. Takaki: Tetsu-to-Hagane, 2003, vol. 89, pp. 616-22.

    Article  Google Scholar 

  10. M. Tanahashi, T. Taniguchi, T. Kayukawa, C. Yamauchi and T. Fujisawa: Tetsu-to-Hagane, 2003, vol. 89, pp. 1183-90.

    Article  Google Scholar 

  11. J.H. Park and Y.B. Kang: Metallurgical and Materials Transactions B, 2006, vol. 5, pp. 791-97.

    Article  Google Scholar 

  12. Y. Higuchi, M. Mitsuhiro and S. Fukagawa: ISIJ International, 1996, vol. 36, pp. S151-S54.

    Article  Google Scholar 

  13. Y.-i. Ito, M. Suda, Y. Kato, H. Nakato and K.-i. Sorimachi: ISIJ International, 1996, vol. 36, pp. S148-S50.

    Article  Google Scholar 

  14. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind and S. Story: Metallurgical and Materials Transactions B, 2011, vol. 42, pp. 720-29.

    Article  Google Scholar 

  15. N. Verma, P.C. Pistorius, R.J. Fruehan, M. Potter, M. Lind and S. Story: Metallurgical and Materials Transactions B, 2011, vol. 42, pp. 711-19.

    Article  Google Scholar 

  16. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830–40.

    Article  Google Scholar 

  17. Y. Ren, L. Zhang and S. Li: ISIJ International, 2014, vol. 54, pp. 2772-79.

    Article  Google Scholar 

  18. K. Mizuno, H. Todoroki, M.Noda and T.Tohge: Iron and Steelmaker, 2001, vol. 28, pp. 93-101.

    Google Scholar 

  19. K. Sakata: ISIJ International, 2006, vol. 46, pp. 1795-99.

    Article  Google Scholar 

  20. Y. Ehara, S. Yokoyama and M. Kawakami: Tetsu-to-Hagane, 2007, vol. 93, pp. 475-82.

    Article  Google Scholar 

  21. Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, and W. Mao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1024–34.

    Article  Google Scholar 

  22. S. Li, L. Zhang, Y. Ren, W. Fang, W. Yang, S. Shao, J. Yang and W. Mao: ISIJ International, 2016, vol. 56, pp. 584–93.

    Article  Google Scholar 

  23. C. Revilla, B. López and J.M. Rodriguez-Ibabe: Materials & Design, 2014, vol. 62, pp. 296-304.

    Article  Google Scholar 

  24. H. Ha, C. Park and H. Kwon: Scripta Materialia, 2006, vol. 55, pp. 991-94.

    Article  Google Scholar 

  25. C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith and E.A. Marquis: Acta Materialia, 2013, vol. 61, pp. 2219-35.

    Article  Google Scholar 

  26. M. Song, X. Lin, F. Liu, H. Yang and W. Huang: Materials & Design, 2016, vol. 90, pp. 459-67.

    Article  Google Scholar 

  27. I. Takahashi, T. Sakae and T. Yoshida: Tetsu-to-Hagane, 1967, vol. 53, pp. 350-52.

    Article  Google Scholar 

  28. H. Shibata, T. Tanaka, K. Kimura and S.Y. Kitamura: Ironmaking and Steelmaking, 2010, vol. 37, pp. 522-28.

    Article  Google Scholar 

  29. H. Shibata, K. Kimura, T. Tanaka and S.-y. Kitamura: ISIJ International, 2011, vol. 51, pp. 1944-50.

    Article  Google Scholar 

  30. I.-H. Jung: Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, vol. 34, pp. 332–62.

  31. L. Holappa, M. Hamalainen, M. Liukkonen and M. Lind: Ironmaking and Steelmaking, 2003, vol. 30, pp. 111-15.

    Article  Google Scholar 

  32. A. Harada, N. Maruoka, H. Shibata and S.-y. Kitamura: ISIJ International, 2013, vol. 53, pp. 2110-17.

    Article  Google Scholar 

  33. A. Harada, N. Maruoka, H. Shibata and S.-y. Kitamura: ISIJ International, 2013, vol. 53, pp. 2118-25.

    Article  Google Scholar 

  34. P.R. Scheller and Q. Shu: Steel Research International, 2014, vol. 85, pp. 1310-16.

    Article  Google Scholar 

  35. D. Lu, A. Irons and W. Lu: Ironmaking & Steelmaking, 1994, vol. 21, pp. 362-71.

    Google Scholar 

  36. G. Ye, P. Jönsson and T. Lund: ISIJ International, 1996, vol. 36, pp. S105-S08.

    Article  Google Scholar 

  37. Z.J. Han, L. Liu, M. Lind and L. Holappa: Acta Metallurgica Sinica (English Letters), 2006, vol. 19, pp. 1-8.

    Article  Google Scholar 

  38. D. Roy, P.C. Pistorius and R.J. Fruehan: Metallurgical and Materials Transactions B, 2013, vol. 44, pp. 1095-104.

    Article  Google Scholar 

  39. D. Roy, P.C. Pistorius and R.J. Fruehan: Metallurgical and Materials Transactions B, 2013, vol. 44, pp. 1086-94.

    Article  Google Scholar 

  40. S.P.T. Piva, and P.C. Pistorius: Conference on Molten Slags, Fluxes and Salts (Molten 2016), (Seattle), 2016, pp. 117–25.

  41. D. You, S.K. Michelic, C. Bernhard, D. Loder, and G. Wieser: ISIJ International, 2016, in press.

  42. Z. Liu, K. Gu and K. Cai: ISIJ International, 2002, vol. 42, pp. 950-57.

    Article  Google Scholar 

  43. S. Fukumoto, Y. Iwasaki and Y. Hikasa: ISIJ International, 2016, vol. 56, pp. 1023-30.

    Article  Google Scholar 

  44. W.Y. Kim, J.G. Kang, C.H. Park, J.B. Lee and J.J. Pak: ISIJ International, 2007, vol. 47, pp. 945-54.

    Article  Google Scholar 

  45. H. Ohta and H. Suito: ISIJ International, 2007, vol. 47, pp. 197-206.

    Article  Google Scholar 

  46. W. Choi, H. Matsuura and F. Tsukihashi: ISIJ International, 2013, vol. 53, pp. 2007-12.

    Article  Google Scholar 

  47. H. Zhang, K. Nakajima, C.-A. Gandin and J. He: ISIJ International, 2013, vol. 53, pp. 493-501.

    Article  Google Scholar 

  48. H. Zhang, Q. Liu, H. Shibata, Q. Wang, P. Jönsson, J. He and K. Nakajima: ISIJ International, 2014, vol. 54, pp. 374-83.

    Article  Google Scholar 

  49. M.-A. Van Ende, and I.-H. Jung: Metall. Mater. Trans. B, 2016, pp. 1-9, Van Ende2016.

  50. W. Yang, L. Zhang, H. Duan, Y. Ren, J. Wang and X. Liu: EPD Congress 2014, Wiley, 2014, pp. 269-76.

    Google Scholar 

  51. P.C. Pistorius and N. Verma: Microscopy and Microanalysis, 2011, vol. 17, pp. 963-71.

    Article  Google Scholar 

  52. I.H. Jung: Solid State Ionics, 2006, vol. 177, pp. 765–77.

    Article  Google Scholar 

  53. G. Neumann, and C. Tuijn: Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon Meterials Series 14, Elsevier, 2009.

  54. T. Thorvaldsson and A. Salwén: Scripta Metallurgica, 1984, vol. 18, pp. 739-42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the industry members of Center of Iron and Steelmaking research and the use of Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785. The authors acknowledge support from the National Science Foundation China [Grant Numbers 51274034, 51334002, 51604023, 51504020, and 51404019], Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2) and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China, and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chris Pistorius.

Additional information

Manuscript submitted November 10, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhang, L. & Pistorius, P.C. Transformation of Oxide Inclusions in Type 304 Stainless Steels during Heat Treatment. Metall Mater Trans B 48, 2281–2292 (2017). https://doi.org/10.1007/s11663-017-1007-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1007-8

Keywords

Navigation