Skip to main content

Advertisement

Log in

Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, a conducting copolymer hydrogel of poly(aniline-co-pyrrole)/polyvinyl alcohol (PACP/PVA) was prepared by in-situ polymerization of aniline and pyrrole in aqueous solution of phytic acid and PVA. This PACP/PVA hydrogel can be used directly as self-standing electrode for supercapacitors. The hydrogel electrode delivers high electrochemical capacitance (633.5 F g−1 at 0.5 A g−1, 1267 mF cm−2 at 1 mA cm−2) and excellent cycling stability (86.4% capacitance retention after 10,000 cycles). In particular, the remarkable flexibility of the PACP/PVA hydrogel electrode is demonstrated by 81.7% of initial capacitance retention after repeated bending 500 cycles. Based on PACP/PVA hydrogel electrode and a typical PVA/H2SO4 hydrogel electrolyte, an all-hydrogel-state supercapacitor was assembled. The supercapacitor demonstrates high areal capacitance of 317 mF cm−2 at 1 mA cm−2 and energy density of 44 µWh cm−2 (22 Wh kg−1) at 250 µW cm−2 (125 W kg−1). This work provides a new direction for fabricating self-standing flexible hydrogel electrode materials for smart and wearable devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Amjadi M, Kyung K-U, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698

    Article  CAS  Google Scholar 

  2. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  CAS  Google Scholar 

  3. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347:1246501–1246509

    Article  CAS  Google Scholar 

  4. Someya T, Bao Z, Malliaras GG (2016) The rise of plastic bioelectronics. Nature 540:379–385

    Article  CAS  Google Scholar 

  5. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342

    Article  CAS  Google Scholar 

  6. Yang ZK, Ma J, Bai BR, Qiu AD (2019) Free-standing PEDOT/polyaniline conductive polymer hydrogel for flexible solid-state supercapacitors. Electrochim Acta 322:134769

    Article  CAS  Google Scholar 

  7. Wang M, Yang J, Liu SY, Lia MZ, Hu C (2020) Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J Colloid Interface Sci 560:69–76

    Article  CAS  Google Scholar 

  8. Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139

    Article  CAS  Google Scholar 

  9. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZN (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  10. Wang B, Chen JS, Wang Z, Madhavi S, Lou XW (2012) Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv Energy Mater 2:1188–1192

    Article  CAS  Google Scholar 

  11. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674

    Article  CAS  Google Scholar 

  12. Bo JY, Luo XF, Huang HB, Lia L, Lai W (2018) Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J Power Sources 407:105–111

    Article  CAS  Google Scholar 

  13. Wang ML, Yu YF, Cui MZ, Cao X, Liu WF (2020) Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor. Electrochim Acta 329:135181

    Article  CAS  Google Scholar 

  14. Pan LJ, Yu GH, Zhai DY, Lee HR (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292

    Article  CAS  Google Scholar 

  15. Wang YQ, Shi Y, Pan LJ, Ding Y, Zhao Y (2015) Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 15:7736–7741

    Article  CAS  Google Scholar 

  16. Heydari H, Gholivand MB (2017) An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor. New J Chem 41:237–244

    Article  CAS  Google Scholar 

  17. Wang W, Zhang Q, Li J, Liu X, Wang L, Zhu J, Luo W, Jiang W (2015) An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv 5:12

    CAS  Google Scholar 

  18. Huang Y, Li HF, Wang ZF, Zhu MS, Pei ZX, Xue Q, Huang Y, Zhi CY (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422

    Article  CAS  Google Scholar 

  19. Peng ZY, Wang CZ, Zhang ZC, Zhong WB (2019) Synthesis and enhancement of electroactive biomass/polypyrrole hydrogels for high performance flexible all-solid-state supercapacitors. Adv Mater Interfaces 6:1901393

    Article  CAS  Google Scholar 

  20. Fu LJ, Qu QT, Holze R, Kondratiev V, Wu YP (2019) Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? J Mater Chem A 7:25

    Google Scholar 

  21. Shi Y, Pan LJ, Liu BR, Wang YQ, Cui Y (2014) Nanostructured conductive polypyrrole hydrogels as high performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    Article  CAS  Google Scholar 

  22. Huang HB, Yao JL, Li L, Zhu F, Liu ZT (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing-thawing method as self supported electrode for supercapacitors. J Mater Sci 51:8728–8736. https://doi.org/10.1007/s10853-016-0137-8

    Article  CAS  Google Scholar 

  23. Ding Q, Xu X, Yue Y, Mei C, Huang C (2018) Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl Mater Interfaces 10:27987–28002

    Article  CAS  Google Scholar 

  24. Yin BS, Zhang SW, Ren QQ, Liu C (2017) Elastic soft hydrogel supercapacitor for energy storage. J Mater Chem A 5:24942

    Article  CAS  Google Scholar 

  25. Wang M, Yang J, Liu SY, Li MZ (2020) Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J Colloid Interface Sci 560:69–76

    Article  CAS  Google Scholar 

  26. Almeida AL, Ferreira NG (2020) Fabrication of binary composites from polyaniline deposits on carbon fibers heat treated at three different temperatures: structural and electrochemical analyses for potential application in supercapacitors. Mater Chem Phys 239:122101

    Article  CAS  Google Scholar 

  27. Arthisree D, Madhuri W (2020) Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and greensynthesized graphene quantum dot for supercapacitor application. Int J Hydrogen Energy 45:9317–9327

    Article  CAS  Google Scholar 

  28. San B, Talu M (1998) Electrochemical copolymerization of pyrrole and aniline. Synth Met 94:221–227

    Article  Google Scholar 

  29. Fusalba F, elanger DB´ (1999) Electropolymerization of polypyrrole and polyaniline-polypyrrole from organic acidic medium. J Phys Chem B 103:9044–9054

    Article  CAS  Google Scholar 

  30. Cakmak G, Küçükyavuz Z, Küçükyavuz S (2005) Conductive copolymers of polyaniline, polypyrrole and poly (dimethylsiloxane). Synth Met 151:10–18

    Article  CAS  Google Scholar 

  31. Moyseowicz A, González Z, Menéndez R, Gryglewicz G (2018) Three-dimensional poly(aniline-co-pyrrole)/thermally reduced graphene oxide composite as a binder-free electrode for high-performance supercapacitors. Compos B 145:232–239

    Article  CAS  Google Scholar 

  32. Tran VC, Sahoo S, Hwang J, Nguyen VQ (2018) Poly(aniline-co-pyrrole)-spaced graphene aerogel for advanced supercapacitor electrodes. J Electroanal Chem 810:154–160

    Article  CAS  Google Scholar 

  33. Zhang AQ, Wang LZ, Zhang LS, Zhang Y (2010) Preparation and electrochemical capacitance of poly(pyrrole-co-aniline). J Appl Polym Sci 115:1881–1885

    Article  CAS  Google Scholar 

  34. Wang Y, Ma WB, Guo L, Song XZ, Tao XY (2020) Phytic acid-doped poly(aniline-co-pyrrole) copolymers for supercapacitor electrodes applications. J Mater Sci Mater Electron 31:6263–6273

    Article  CAS  Google Scholar 

  35. Li L, Zhang Y, Lu HY, Wang YF, Xu JS, Zhu JX (2020) Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat Commun 11:62

    Article  CAS  Google Scholar 

  36. Carli DC, Egon S, Massao I, Bruno S (2009) Thermoanalytical and spectroscopic studies to characterize phytic acid complexes with Mn(II) and Co(II). J Braz Chem Soc 20:1515–1522

    Article  Google Scholar 

  37. Stejskala J, Trchov M (2004) Poly(aniline-co-pyrrole): powders, films, and colloids. Thermophoretic mobility of colloidal particles. Synth Met 146:29–36

    Article  CAS  Google Scholar 

  38. Wang HX, Biswas SK, Zhu SL, Lu Y, Yue YY (2020) Self-healable electro-conductive hydrogels based on core-shell structured nanocellulose/carbon nanotubes hybrids for use as flexible supercapacitors. Nanomaterials 10:112

    Article  CAS  Google Scholar 

  39. Pandey K, Yadav P, Indrajit M (2015) Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys Chem Chem Phys 17:878

    Article  CAS  Google Scholar 

  40. Zang LM, Liu QF, Qiu JH, Yang C, Wei C (2017) Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel. ACS Appl Mater Interfaces 9:33941–33947

    Article  CAS  Google Scholar 

  41. Li WW, Lu H, Zhang N, Ma MM (2017) Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors. ACS Appl Mater Interfaces 9:20142–20149

    Article  CAS  Google Scholar 

  42. Xu WB, Mu B, Zhang WB, Wang AQ (2016) Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Adv 6:68302

    Article  CAS  Google Scholar 

  43. Guo YH, Bae J, Zhao F, Yu GH (2019) Functional hydrogels for next-generation batteries and supercapacitors. Trends chem 1:335–348

    Article  CAS  Google Scholar 

  44. Hao GP, Hippauf F, Oschatz M, Wisser FM (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8:7138–7146

    Article  CAS  Google Scholar 

  45. Meng CZ, Liu CH, Chen LZ, Hu CH (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  Google Scholar 

  46. Hu RF, Zheng JP (2017) Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. J Power Sources 364:200–207

    Article  CAS  Google Scholar 

  47. Li WW, Gao FX, Wang XQ, Zhang N (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 55:9196–9201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (Grant 2019XKQYMS03).

Author information

Authors and Affiliations

Authors

Contributions

XYT was involved in funding acquisition, writing-original draft, writing-review & editing, project administration. YW contributed to investigation, validation. WBM was involved in methodology. SFY contributed to writing-review & editing. KHZ was involved in data curation. LTG contributed to conceptualization. HLF was involved in software. ZSL contributed to formal analysis. YBZ was involved in supervision. XYW contributed to resources.

Corresponding author

Correspondence to Xue-Yu Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 866 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, XY., Wang, Y., Ma, Wb. et al. Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor. J Mater Sci 56, 16028–16043 (2021). https://doi.org/10.1007/s10853-021-06304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06304-3

Navigation