Skip to main content
Log in

Ultra-wideband electromagnetic interference suppression lightweight metamaterial absorber based on S/C/X frequency band

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this paper, a bias-insensitive ultra-wideband (UWB) metamaterial absorber (MMA) is designed and prepared based on photolithography. The surface structure consists of two similar copper fractal structures with patch resistors, where the external and internal structures operate at lower and higher frequencies, respectively, to extend the absorption performance through a coupling mechanism. The cell size of the MMA is 19 × 19 × 5.136 mm3 (0.22 λ0 × 0.22 λ0 × 0.06 λ0), where λ0 is the wavelength corresponding to the lowest resonant frequency. An operating bandwidth of 122.2% is achieved in the 3.50–14.49 GHz range, and an average absorption rate of greater than 95% is realized with excellent electromagnetic characteristics. Meanwhile, a polyimide film with stable performance is selected as the graphic structure substrate, and lightweight foam board and copper are used as the intermediate dielectric layer and the bottom reflective layer. The proposed metamaterial absorber is insensitive to polarization, lightweight, and flexible, and has potential applications in the S, C, and X-band ranges for reducing electromagnetic wave pollution and interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author, Dr. Zeng Qu and Prof. Binzhen Zhang, upon reasonable request.

References

  1. Sun K, Duan W, Lei Y, Wang Z, Tian J, Yang P, He Q, Chen M, Wu H, Zhang Z, Fan R (2022) Flexible multi-walled carbon nanotubes/polyvinylidene fluoride membranous composites with weakly negative permittivity and low frequency dispersion. Compos Part A Appl Sci Manuf 156:106854. https://doi.org/10.1016/j.compositesa.2022.106854

  2. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782. https://doi.org/10.1126/science.1125907

    Article  CAS  Google Scholar 

  3. Mo B, Wang C (2022) Broadband and wideangle absorption of transparent conformal metamaterial. Adv Compos Hybrid Mater 5:383–389. https://doi.org/10.1007/s42114-021-00410-1

    Article  CAS  Google Scholar 

  4. Xu J, Cao J, Guo M, Yang S, Yao H, Lei M, Hao Y, Bi K (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Adv Compos Hybrid Mater 4:761–767. https://doi.org/10.1007/s42114-021-00278-1

    Article  Google Scholar 

  5. Albi AM, El-Badawi MK, Nayyeri V, Ramahi OM (2020) Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators. IEEE Trans Microw Theory Tech 68(10):4340–4347. https://doi.org/10.1109/TMTT.2020.3002996

    Article  Google Scholar 

  6. Haq T, Ruan C, Zhang X, Ullah S, Fahad AK, He W (2020) Extremely sensitive microwave sensor for evaluation of dielectric characteristics of low-permittivity materials. Sensors 20(7):1916. https://doi.org/10.3390/s20071916

    Article  Google Scholar 

  7. Kumar A, Kapoor P, Kumar P, Kumar J, Kumar A (2020) Metamaterial loaded aperture coupled biodegradable star-shaped dielectric resonator antenna for WLAN and broadband applications. Microw Opt Technol Lett 62(1):264–277. https://doi.org/10.1002/mop.32001

    Article  Google Scholar 

  8. Elwi TA (2018) A miniaturized folded antenna array for MIMO application. Wireless Pers Commun 98:1871–1883. https://doi.org/10.1007/s11277-017-4950-4

    Article  Google Scholar 

  9. Wei Y, Duan J, Jing H, Lyu Z, Hao J, Qu Z, Wang J, Zhang B (2022) A multiband polarization-controlled metasurface absorber for electromagnetic energy harvesting and wireless power transfer. IEEE Trans Microw Theory Tech 70(5):2861–2871. https://doi.org/10.1109/TMTT.2022.3155718

    Article  Google Scholar 

  10. Li L, Zhang X, Song C, Zhang W, Jia T, Huang Y (2021) Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans Microw Theory Tech 69(3):1518–1528. https://doi.org/10.1109/TMTT.2020.3040962

    Article  Google Scholar 

  11. Sun B, Sun S, He P, Mi HY, Dong B, Liu C, Shen C (2021) Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding. Chem Eng J 416:129083. https://doi.org/10.1016/j.cej.2021.129083

  12. Salas-Sánchez AA, López-Furelos A, Rodríguez-González JA, Ares-Pena FJ, Lopez-Martin ME (2019) Validation of potential effects on human health of in vivo experimental models studied in rats exposed to sub-thermal radiofrequency. Possible health risks due to the interaction of electromagnetic pollution and environmental particles. IEEE Access 7:79186–79198. https://doi.org/10.1109/ACCESS.2019.2923581

    Article  Google Scholar 

  13. Xia Y, Gao W, Gao C (2022) A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv Func Mater 32(42):2204591. https://doi.org/10.1002/adfm.202204591

    Article  CAS  Google Scholar 

  14. Zhu H, Wang Y, Qu M, Pan Y, Zheng G, Dai K, Huang M, Alhadhrami A, Ibrahim MM, El-Bahy ZM, Liu C, Shen C, Liu X (2022) Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater 5:1966–1975. https://doi.org/10.1007/s42114-022-00529-9

    Article  CAS  Google Scholar 

  15. Ruan J, Chang Z, Rong H, Alomar TS, Zhu D, AlMasoud Najla, Liao Y, Zhao R, Zhao X, Li Y, Xu BB, Guo Z, El-Bahy ZM, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  16. Xie P, Shi Z, Feng M et al (2022) Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater 5:679–695. https://doi.org/10.1007/s42114-022-00479-2

    Article  Google Scholar 

  17. Lv H, Yang Z, Pan H et al (2022) Electromagnetic absorption materials: current progress and new frontiers. Prog Mater Sci 127:100946. https://doi.org/10.1016/j.pmatsci.2022.100946

  18. Guo Y, Xu J, Lan C et al (2021) Broadband and high-efficiency linear polarization converter based on reflective metasurface. Eng Sci 14:39–45. https://doi.org/10.30919/es8d1169

  19. Jing H, Duan J, Wei Y et al (2022) An ultra-broadband flexible polarization-insensitive microwave metamaterial absorber. Mater Res Express 9(2):025802. https://doi.org/10.1088/2053-1591/ac5484

  20. Li R, He F, Zhang Y, Wei J, He Y, Miao L, Bie S, Jiang J (2020) Broadband absorber of impedance dispersion lossy patterned resistive films. J Phys D Appl Phys 53(30):305104. https://doi.org/10.1088/1361-6463/ab8513

  21. Yang D, Yin Y, Zhang Z, Li D, Cao Y (2020) Wide-angle microwave absorption properties of multilayer metamaterial fabricated by 3D printing. Materials Letters 281:128571. https://doi.org/10.1016/j.matlet.2020.128571

  22. Yin L, Tian X, Shang Z, Li D (2019) Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing. Mater Lett 239:132–135. https://doi.org/10.1016/j.matlet.2018.12.087

    Article  CAS  Google Scholar 

  23. Chen Y, Chen K, Zhang D, Li S, Xu Y, Wang X, Zhang S (2021) Ultrabroadband microwave absorber based on 3D water microchannels. Photonics Res 9(7):1391–1396. https://doi.org/10.1364/PRJ.422686

    Article  CAS  Google Scholar 

  24. Kwon H, D’Aguanno G, Alu A (2021) Optically transparent microwave absorber based on water-based moth-eye structures. Opt Express 29(6):9190–9198. https://doi.org/10.1364/OE.418220

    Article  CAS  Google Scholar 

  25. Rozanov KN (2000) Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antennas Propag 48(8):1230–1234. https://doi.org/10.1109/8.884491

    Article  Google Scholar 

  26. Du Z, Liang J, Cai T, Wang G, Deng T, Wu B (2022) Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance. Opt Express 30(2):914–925. https://doi.org/10.1364/OE.445081

    Article  CAS  Google Scholar 

  27. Kumar A, Reddy GS, Padhi J, Jawale R, Narayan S (2022) Wideband, polarization independent electromagnetic wave absorber using cross arrow resonator and lumped SMD resistors for C and X band applications. Int J RF Microw Comput-Aided Eng 32(7):e23163. https://doi.org/10.1002/mmce.23163

  28. Zhang H, Zhang HF, Liu GB, Li HM (2019) Ultra-broadband multilayer absorber with the lumped resistors and solid-state plasma. Results Phys 12:917–924. https://doi.org/10.1016/j.rinp.2018.12.059

    Article  Google Scholar 

  29. Nguyen TQH, Nguyen TKT, Cao TN, Nguyen H, Bach LB (2020) Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications. Aip Adv 10(3):035326. https://doi.org/10.1063/1.5143915

  30. Xiong H, Long TB, Shi T, Jiang BX, Zhang JT (2020) Wideband and polarization-insensitive metamaterial absorber with loading lumped resistors. Appl Opt 59(23):7092–7098. https://doi.org/10.1364/AO.395904

    Article  Google Scholar 

  31. Chen T, Li SJ, Cao XY, Gao J, Guo ZX (2019) Ultra-wideband and polarization-insensitive fractal perfect metamaterial absorber based on a three-dimensional fractal tree microstructure with multi-modes. Appl Phys A 125(4):232. https://doi.org/10.1007/s00339-019-2536-6

    Article  CAS  Google Scholar 

  32. Jing H, Duan J, Wei Y, Hao J, Qu Z, Wang J, Zhang B (2022) An ultra-broadband flexible polarization-insensitive microwave metamaterial absorber. Mater Res Express 9:025802. https://doi.org/10.1088/2053-1591/ac5484

  33. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340. https://doi.org/10.30919/es8d518

  34. Wu N, Du W, Hu Q, Vupputuri S, Jiang Q (2021) Recent development in fabrication of co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23. https://doi.org/10.30919/es8d1149

  35. Pang Y, Cheng H, Zhou Y, Wang J (2013) Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach. J Appl Phys 113(11):114902. https://doi.org/10.1063/1.4795277

  36. Guo J, Chen Z, Xu X, Li X, Liu H, Xi S, Abdul W, Wu Q, Zhang P, Xu B, Zhu J, Guo Z (2022) Enhanced electromagnetic wave absorption of engineered epoxy nanocomposites with the assistance of polyaniline fillers. Adv Compos Hybrid Mater 5(3):1769–1777. https://doi.org/10.1007/s42114-022-00417-2

    Article  CAS  Google Scholar 

  37. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049

    Article  CAS  Google Scholar 

  38. Smith DR, Vier DC, Koschny Th, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617. https://doi.org/10.1103/PhysRevE.71.036617

  39. Smith DR, Schultz S, Markoš P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104. https://doi.org/10.1103/PhysRevB.65.195104

  40. Liu RP, Cui TJ, Huang D, Zhao B, Smith DR (2007) Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory. Phys Rev E 76(2):026606. https://doi.org/10.1103/PhysRevE.76.026606

Download references

Acknowledgements

We want to thank Dr. Qiuping Zhang for her suggestions and revisions to this article.

Funding

This work was supported by the National Natural Science Foundation of China (No. 52175555), the fund for Shanxi “1331 Project” Key Subject Construction, the National Natural Science Foundation of China (innovation community) (No. 51821003), the Fundamental Research Program of Shanxi Province (No. 20210302123074), and the Fundamental Research Program of Shanxi Province (Young Project No. 202203021212146).

Author information

Authors and Affiliations

Authors

Contributions

Zeng Qu, Hao Deng, and Qiuoing Zhang prepared the main manuscript; Huihui Jing processed the data in Figs. 1, 2, and 3; Yiqing Wei and Jinfeng Kang processed the data in Figs. 4, 5, and 6; Xinlei Wu and Baoli Mi processed the data in Figs. 7 and 8; Ruirui Li and Jiayun Wang carried out the process preparation; Junping Duan and Binzhen Zhang did the chip process and proofreading, and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Zeng Qu or Binzhen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 663 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Jing, H., Deng, H. et al. Ultra-wideband electromagnetic interference suppression lightweight metamaterial absorber based on S/C/X frequency band. Adv Compos Hybrid Mater 6, 156 (2023). https://doi.org/10.1007/s42114-023-00734-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00734-0

Keywords

Navigation