Skip to main content
Log in

Electrospun poly(vinyl alcohol)/silica film for radiative cooling

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Daytime radiative cooling materials have recently attracted tremendous interest by reflecting sunlight and radiating heat to the ultracold outer space without any energy consumption. While some progress has been made, it remains a big challenge in fabricating highly efficient, low-cost, biodegradable, and sustainable all-day radiative coolers. Here, we report a hierarchically structured poly(vinyl alcohol)/silica film via a facile electrospinning method. The diameters of the electrospun fibers range from several nanometers to several microns, and the silica particles distribute across the surface randomly. The optimal film exhibits sufficiently high solar reflectance (97%) and superior longwave infrared thermal emittance (95%), thus realizing sub-ambient cooling of ~ 9.3 °C during the night and ~ 4.5 to ~ 7.5 °C during the midday under the solar intensity of ~ 700 W/m2. Overall, this film demonstrates high performance of daytime radiative cooling, with an inexpensive and environmental production way compared to those of state-of-the-art designs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang P, Li S, Liu C, Shen C, Liu X (2021) Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater. Sep Purifi Technol 263:118364

    Article  CAS  Google Scholar 

  2. Wang T, Xing L, Qu M, Pan Y, Liu C, Shen C, Liu X (2002) Superhydrophobic polycarbonate blend monolith with micro/nano porous structure for selective oil/water separation. Polymer 4312:4994

  3. Wang X, Zhang M, Schubert DW, Liu X (2022) Oil-water separation polypropylene foam with advanced solvent-evaporation induced coexistence of microspheres and microporous structure. Macromol Rapid Commun 43:2200177

    Article  CAS  Google Scholar 

  4. Pan D, Su F, Liu C, Guo Z (2022) Research progress for plastic waste management and manufacture of value-added products. Adv Compos Hybrid Mater 3:443–461

    Article  Google Scholar 

  5. Chen Q, Gao Q, Wang W, Schubert W, Liu X (2022) Flexible, conductive, and anisotropic thermoplastic polyurethane/polydopamine/MXene foam for piezoresistive sensors and motion monitoring. Compos Part A-Appl S 155:160838

  6. Liu Z, Li G, Qin Q, Mi L, Li G, Zheng Q, Liu C, Li Q, Liu X (2021) Electrospun PVDF/PAN membrane for pressure sensor and sodium-ion battery separator. Adv Compos Hybrid Mater 4:1215

  7. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884

    Article  CAS  Google Scholar 

  8. Jia Y, Pan Y, Wang C, Liu C, Shen C, Pan C, Guo Z, Liu X (2021) Flexible Ag microparticles/MXenes based film for energy-harvesting. Nano-Micro Lett 13:201

    Article  CAS  Google Scholar 

  9. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  10. Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z, Pan D, Guo Z (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4(2):306–316

    Article  CAS  Google Scholar 

  11. Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert D, Guo Z, Liu X (2022) Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett 14(1):63

  12. Zhang K, Ma Z, Deng H, Fu Q (2022) Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer. Adv Compos Hybrid Mater 5(1):238–249

    Article  CAS  Google Scholar 

  13. Cheng H, Xing L, Zuo Y, Pan Y, Huang M, Alhadhrami A, Ibrahim M, El-Bahy Z, Liu C, Shen C, Liu X (2022) Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00487-2

  14. More AP (2022) Flax fiber–based polymer composites: a review. Adv Compos Hybrid Mater 5(1):1–20

    Article  CAS  Google Scholar 

  15. Cheng Z, Han H, Wang F, Yan Y, Shi X, Liang H, Zhang X, Shuai Y (2021) Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89:106377

    Article  CAS  Google Scholar 

  16. Xiang B, Zhang R, Luo Y, Zhang S, Xu L, Min H, Tang S, Meng X (2021) 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81:9

    Article  Google Scholar 

  17. Zhou L, Rada J, Zhang H, Song H, Mirniaharikandi S, Ooi BS, Gan Q (2021) Sustainable and inexpensive polydimethylsiloxane sponges for daytime radiative cooling. Adv Sci 8(23):2102502

    Article  CAS  Google Scholar 

  18. Zhou K, Li W, Patel BB, Tao R, Chang Y, Fan S, Diao Y, Cai L (2021) Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano lett 21(3):1493–1499

    Article  CAS  Google Scholar 

  19. Ma H, Yao K, Dou S, Xiao M, Dai M, Wang L, Zhao H, Zhao J, Li Y, Zhan Y (2020) Multilayered SiO2/Si3N4 photonic emitter to achieve high-performance all-day radiative cooling. Sol Energy Mat and Sol C 212:110584

    Article  CAS  Google Scholar 

  20. Zhu J, An Z, Zhang A, Du Y, Zhou X, Geng Y, Chen G (2022) Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling. iScience 25(4):104126

  21. Chen Y, Dang B, Fu J, Wang C, Li C, Sun Q, Li H (2021) Cellulose-based hybrid structural material for radiative cooling. Nano lett 21(1):397–404

    Article  CAS  Google Scholar 

  22. Jing W, Zhang S, Zhang W, Chen Z, Zhang C, Wu D, Gao Y, Zhu H (2021) Scalable and flexible electrospun film for daytime subambient radiative cooling. ACS Appl Mater Interfaces 13(25):29558–29566

    Article  CAS  Google Scholar 

  23. Tian Y, Shao H, Liu X, Chen F, Li Y, Tang C, Zheng Y (2021) Superhydrophobic and recyclable cellulose-fiber-based composites for high-efficiency passive radiative cooling. ACS Appl Mater Interfaces 13(19):22521–22530

    Article  CAS  Google Scholar 

  24. Wang X, Liu X, Li Z, Zhang H, Yang Z, Zhou H, Fan T (2020) Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv Funct Mater 30(5):1907562

    Article  CAS  Google Scholar 

  25. Wang H-D, Xue C-H, Guo X-J, Liu B-Y, Ji Z-Y, Huang M-C, Jia S-T (2021) Superhydrophobic porous film for daytime radiative cooling. Appl Mater Today 24:101100

    Article  Google Scholar 

  26. Zhong H, Li Y, Zhang P, Gao S, Liu B, Wang Y, Meng T, Zhou Y, Hou H, Xue C, Zhao Y, Wang Z (2021) Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings. ACS nano15(6):10076–10083

  27. Li P, Wang A, Fan J, Kang Q, Jiang P, Bao H, Huang X (2021) Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater 32(5):2109542

    Article  Google Scholar 

  28. Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329):1062–1066

    Article  CAS  Google Scholar 

  29. Zhong H, Zhang P, Li Y, Yang X, Zhao Y, Wang Z (2020) Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl Mater Interfaces 12(46):51409–51417

    Article  CAS  Google Scholar 

  30. Chae D, Kim M, Jung P-H, Son S, Seo J, Liu Y, Lee BJ, Lee H (2020) Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl Mater Interfaces 12(7):8073–8081

    Article  CAS  Google Scholar 

  31. Perrakis G, Tasolamprou AC, Kenanakis G, Economou EN, Tzortzakis S, Kafesaki M (2020) Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: a comparative study for crystalline silicon-based architectures. Opt Express 28(13):18548–18565

    Article  CAS  Google Scholar 

  32. Chen M, Pang D, Mandal J, Chen X, Yan H, He Y, Yu N, Yang Y (2021) Designing Mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano lett 21(3):1412–1418

    Article  CAS  Google Scholar 

  33. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528):540–544

    Article  CAS  Google Scholar 

  34. Tian Y, Liu X, Li J, Caratenuto A, Zhou S, Deng Y, Xiao G, Minus ML, Zheng Y (2021) Scalable, fire-retardant, and spectrally robust melamine-formaldehyde photonic bulk for efficient daytime radiative cooling. Appl Mater Today 24:101103

    Article  Google Scholar 

  35. Wang T, Wu Y, Shi L, Hu X, Chen M, Wu L (2021) A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun 12(1):365

    Article  CAS  Google Scholar 

  36. Chae D, Lim H, So S, Son S, Ju S, Kim W, Rho J, Lee H (2021) Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling. ACS Appl Mater Interfaces 13(18):21119–21126

    Article  CAS  Google Scholar 

  37. Chae D, Son S, Lim H, Jung PH, Ha J, Lee H (2021) Scalable and paint-format microparticle–polymer composite enabling high-performance daytime radiative cooling. Mater Today Phys 18:100389

    Article  CAS  Google Scholar 

  38. Jaramillo-Fernandez J, Whitworth GL, Pariente JA, Blanco A, Garcia PD, Lopez C, Sotomayor-Torres CM (2021) A self-assembled 2D thermofunctional material for radiative cooling. Small 15(52):1905290

    Article  Google Scholar 

  39. Li X, Peoples J, Yao P, Ruan X (2021) Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl Mater Interfaces 13(18):21733–21739

    Article  CAS  Google Scholar 

  40. Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y (2018) Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412):315–318

    Article  CAS  Google Scholar 

  41. Banik U, Agrawal A, Meddeb H, Sergeev O, Reininghaus N, Götz-Köhler M, Gehrke K, Stührenberg J, Vehse M, Sznajder M, Agert C (2021) Efficient thin polymer coating as a selective thermal emitter for passive daytime radiative cooling. ACS Appl Mater Interfaces 13(20):24130–24137

    Article  CAS  Google Scholar 

  42. Huang W, Chen Y, Luo Y, Mandal J, Li W, Chen M, Tsai C-C, Shan Z, Yu N, Yang Y (2021) Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv Funct Mater 31(19):2010334

    Article  CAS  Google Scholar 

  43. Son S, Liu Y, Chae D, Lee H (2020) Cross-linked porous polymeric coating without a metal-reflective layer for sub-ambient radiative cooling. ACS Appl Mater Interfaces 12(52):57832–57839

    Article  CAS  Google Scholar 

  44. Hsu P-C, Song A, Y, Catrysse P. B, Liu C, Peng Y, Xie J, Fan S, Cui Y, (2016) Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303):1019–1023

    Article  CAS  Google Scholar 

  45. Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G (2021) Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555):692–696

    Article  CAS  Google Scholar 

  46. Peng Y, Chen J, Song AY, Catrysse PB, Hsu P-C, Cai L, Liu B, Zhu Y, Zhou G, Wu DS, Lee HR, Fan S, Cui Y (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1(2):105–112

    Article  Google Scholar 

  47. Kim G, Park K, Hwang K-J, Jin S (2021) Highly sunlight reflective and infrared semi-transparent nanomesh textiles. ACS Nano 15(10):15962–15971

    Article  CAS  Google Scholar 

  48. Lee D, Go M, Son S, Kim M, Badloe T, Lee H, Kim JK, Rho J (2021) Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79:105426

    Article  CAS  Google Scholar 

  49. Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, Zhang N, Xu C, Ng T, Yu Z, Ooi B, Gan Q (2019) A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain 2(8):718–724

    Article  Google Scholar 

  50. Li D, Liu X, Li W, Lin Z, Zhu B, Li Z, Li J, Li B, Fan S, Xie J, Zhu J (2020) Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol 16(2):153–158

    Article  Google Scholar 

  51. Phuong NN, Duong TT, Le TPQ, Hoang TK, Ngo HM, Phuong NA, Pham QT, Doan TO, Ho TC, Da Le N, Nguyen TAH, Strady E, Fauvelle V, Ourgaud M, Schmidt N, Sempere R (2022) Microplastics in Asian freshwater ecosystems: current knowledge and perspectives. Sci Total Environ 808:151989

    Article  CAS  Google Scholar 

  52. Zhang Y, Gao T, Kang S, Allen S, Luo X, Allen D (2021) Microplastics in glaciers of the Tibetan Plateau: evidence for the long-range transport of microplastics. Sci Total Environ 758:143634

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China (51803190), 111 project (D18023), National Key R&D Program of China (2019YFA0706802) and Taif University Researchers Supporting Project of Taif University of Saudi Arabia (TURSP-2020/05) for financial support as well as Zhang San from Shiyanjia Lab (www.shiyanjia.com) for the SEM test. Muchao Qu thanks the financial support from the Guangdong Provincial Colleges and Universities Youth Innovative Talents Project (2021KQNCX046) and the Scientific and Technological Plan of Guangdong Province, China (2019B090905005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yamin Pan or Xianhu Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 437 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Wang, Y., Qu, M. et al. Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater 5, 1966–1975 (2022). https://doi.org/10.1007/s42114-022-00529-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00529-9

Keywords

Navigation