Skip to main content
Log in

Ultra-wideband and polarization-insensitive fractal perfect metamaterial absorber based on a three-dimensional fractal tree microstructure with multi-modes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, an attractive, ultra-wideband, and polarization-insensitive fractal perfect metamaterial absorber had been proposed based on a tree-shaped microstructure. The absorber was composed of two dielectric substrates, a three-dimensional fractal metal tree, and four lumped resistances. The absorption mechanism and different modes for the absorber had been analyzed in simulation. The characters of polarized-insensitivity and wide-incident absorption for the proposed metamaterial absorber were systematically illuminated by the near electric fields, angular absorptions, and surface current distributions. A presented perfect metamaterial absorber device had been easily implemented using the common printed circuit board method and was measured in a microwave anechoic chamber. The results showed that this proposed FPMA provided a relative bandwidth of 86.9% with the absorptivity larger than 80%. Both the simulated and experimental results adequately verified the characters of wideband, wide-incident, and polarization-insensitive absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.J. Cui, D.R. Smith, (Springer, New York, 2010)

  2. P. Alastair, B.R. Hibbins, Evans, J. R. Sambles, Sci. 308, 670 (2005)

    Google Scholar 

  3. K. Uchida, H. Adachi, D. Kikuchi, S. Ito, Z. Qiu, S. Maekawa, E. Saitoh, Nat. Commun. 6, 5910 (2015)

    ADS  Google Scholar 

  4. B. Jacob, Khurgin, Nat. Nanotechnology 10, 1 (2015)

    Google Scholar 

  5. J. Yosuke Ueba, Takahara, T. Nagatsuma, Opt. Lett. 36, 909 (2011)

    ADS  Google Scholar 

  6. D. O’Connor, P. Ginzburg, F.J. Rodrıguez-Fortuno, G.A. Wurtz, A.V. Zayats, Nat. Commun. 5, 5327 (2014)

    ADS  Google Scholar 

  7. R.C. Mitchell-Thomas, T.M. McManus, O. Quevedo-Teruel, S.A.R. Horsley, Y. Hao, Phys. Rev. Lett. 111, 213901 (2013)

    ADS  Google Scholar 

  8. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  9. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2, 517 (2011)

    ADS  Google Scholar 

  10. H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, Z.M. Xu, Phys. Rev. B 86, 205104 (2012)

    ADS  Google Scholar 

  11. F. Ding, Y.X. Cui, X.C. Ge, Y. Jin, S.L. He, Appl. Phys. Lett. 100, 103506 (2012)

    ADS  Google Scholar 

  12. Argyropoulos C, Le KQ, Mattiucci N, Phys. Rev. B 87, 205112 (2013)

    ADS  Google Scholar 

  13. L. Li, Y. Yang, C. Liang, J. Appl. Phys. 110, 063702 (2011)

    ADS  Google Scholar 

  14. S. Li, J. Gao, X. Cao, W. Li, Z. Zhang, D. Zhang, J. Appl. Phys. 116, 213703 (2014)

    ADS  Google Scholar 

  15. X.Y. Peng, B. Wang, S. Lai, D.H. Zhang, J.H. Teng, Opt. Express 20, 27756 (2012)

    ADS  Google Scholar 

  16. S.-J. Li, X.-Y. Cao, J. Gao, T. Liu, Y.-J. Zheng, Z. Zhang, IEEE Trans. Antennas Propag. 63(11), 5155–5160 (2015)

    ADS  Google Scholar 

  17. W. Xu, S. Sonkusale, Appl. Phys. Lett. 103, 031902 (2013)

    ADS  Google Scholar 

  18. C.P. Ho, P. Pitchappa, Y.-S. Lin, C.-Y. Huang, P. Kropelnicki, C. Lee, Appl. Phys. Lett. 104, 161104 (2014)

    ADS  Google Scholar 

  19. S. Hiroki Wakatsuchi, J.J. Kim, Rushton, D.F. Sievenpiper, Phys. Rev. Lett. 111, 245501 (2013)

    ADS  Google Scholar 

  20. A.K. Mohamed, C. Othman, Guclu, F. Capolino, Opt. Express 21, 7614 (2013)

    ADS  Google Scholar 

  21. C. Tun Cao, R.E. Wei, L. Simpson, Zhang, J. Martin, Cryan. Opt. Materials Express 3, 1101 (2013)

    ADS  Google Scholar 

  22. F. Kebin, A.C. Strikwerda, X. Zhang, R.D. Averitt, Phys. Rev. B 87, 161104 (2013) R)

    ADS  Google Scholar 

  23. M.K. Hedayati, A.U. Zillohu, T. Strunskus, F. Faupel, M. Elbahri, Appl. Phys. Lett. 104, 041103 (2014)

    ADS  Google Scholar 

  24. GuangjunWen Yongjun Huang, W. Zhu, J. Li, Opt. Express 22, 16408 (2014)

    ADS  Google Scholar 

  25. F. Pai Wang, S. Casadei, J.C. Shan, Weaver, and Katia Bertoldi. Phys. Rev. Letter. 113, 014301 (2014)

    ADS  Google Scholar 

  26. P.V. Tuong, J.W. Park, J.Y. Rhee, K.W. Kim, W.H. Jang, H. Cheong, Y.P. Lee, Appl. Phys. Lett. 102, 081122 (2013)

    ADS  Google Scholar 

  27. S.-J. Li, J. Gao, X.-Y. Cao, Z. Zhang, T. Liu, Y.-J. Zheng, C. Zhang, G. Zheng, Appl. Phys. Lett. 106, 181103 (2015)

    ADS  Google Scholar 

  28. S.-J. Li, P.-X. Wu, H.-X. Xu, Y.-L. Zhou, X.-Y. Cao, J.-F. Han, C. Zhang, Nanos. Res. Lett. 13, 386 (2018)

    ADS  Google Scholar 

  29. S. Li, J. Gao, X. Cao, Z. Zhang, J. Appl. Phys. 115, 213703 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant (Nos. 61671414, 61471389, 61501494, 61701523, 61801508), the Natural Science Foundational Research Fund of Shaanxi Province (Nos. 2017JM6025, 2018JM6040), the Young Talent fund of University Association for Science and Technology in Shaanxi Province (No. 20170107), Postdoctoral Innovative Talents Support Program of China (BX20180375), and Innovative Talents Cultivate Program of Shaanxi Province (No. 2017KJX-24). They also thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Jia Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Li, SJ., Cao, XY. et al. Ultra-wideband and polarization-insensitive fractal perfect metamaterial absorber based on a three-dimensional fractal tree microstructure with multi-modes. Appl. Phys. A 125, 232 (2019). https://doi.org/10.1007/s00339-019-2536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2536-6

Navigation