Skip to main content

Ultrathin Compact Triple-Band Polarization-Insensitive Metamaterial Microwave Absorber

  • Conference paper
  • First Online:
Mobile Radio Communications and 5G Networks

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 140))

Abstract

The design and characterization of a compact, ultrathin, polarization-insensitive, triple-band metamaterial microwave absorber are presented. The designed absorber consists of three metallic resonators printed on the top of a 0.8-mm-thick FR4 dielectric substrate. The structure is designed to achieve triple-band absorption at 3.92 GHz (S-band), 5.92 GHz (C-Band), and 9.2 GHz (X-Band) with 92.2%, 94.5% and 98.71% absorption, respectively. The proposed design is 0.0245λ thick, and its periodicity is 0.3068λ corresponding to its highest frequency of absorption. The design is compact and ultrathin as compared to several already reported dual- and triple-band absorbers. The absorber exhibits wide angular stability up to 60° angle of incident wave. A prototype of the designed absorber has been fabricated, and the measured results are observed in agreement with the simulated ones. The compact size and ultrathin thickness make the design fit for potential RF applications such as RCS reduction etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Google Scholar 

  2. Lee H, Yi X, Fang N, Srituravanich W, Durant S, Ambati M, Sun C, Zhang X (2005) Realization of optical superlensimaging below the diffraction limit. New J Phys 7:1–16

    Article  MathSciNet  Google Scholar 

  3. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  4. Liu W, Chen ZN, Qing X (2014) Metamaterial-based low-profile broadbandmushroom antenna. IEEE Trans Antennas Propag 62:1165–1172

    Article  Google Scholar 

  5. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) A perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  Google Scholar 

  6. Ferrer JC (2019) Metamaterials and metasurfaces. Intechopen

    Google Scholar 

  7. Lu T, Zhang D, Qiu P, Lian J (2018) An ultra-thin dual band metamaterial absorber based on an asymmetric H shaped structure for terahertz waves. Materials 11:1–10

    Google Scholar 

  8. Singh AK, Abegaonkar MP, Koul SK (2019a) Dual and triple band polarization insensitive ultrathin conformal metamaterial absorbers with wide angular stability. IEEE Trans Electromagn Compat 61:878–886

    Article  Google Scholar 

  9. Shen X, Cui TJ, Zhao J (2011) Polarisation independent wide angle triple band metamaterial absorber. Opt Express 19:9401–9407

    Article  Google Scholar 

  10. Chaurasiya D, Bhattacharyya S, Ghosh S, Munaga P, Srivastava KV (2015) An ultra-thin triple band polarization-insensitive metamaterial absorber for c-band applications. In: IEEE proceedings on 21st national conference on communications (NCC), Mumbai, India

    Google Scholar 

  11. Singh AK, Abegaonkar MP, Koul SK (2019b) A triple band polarization insensitive ultrathin metamaterial absorber for S-C-and X-bands”. Prog Electromagn Res M 77:187–194

    Article  Google Scholar 

  12. Dhillon AS, Mittal D, Bargota R (2019) Triple band ultrathin polarization insensitive metamaterial absorber for defense, explosive detection and airborne radar applications. Microwave Opt Technol Lett 61:89–95

    Article  Google Scholar 

  13. Zeng X, Gao M, Zhang L, Wan G, Hu B (2018) Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microwave Opt Technol Lett 60:1676–1681

    Article  Google Scholar 

  14. Sood D, Tripathi CC (2018) A Polarisation insensitive ultrathin compact triple band metamaterial absorber. Indian J Pure Appl Phys 56:149–157

    Google Scholar 

  15. Ramya S, Rao IS (2016) Design of new metamaterial absorber with triple band for radar cross section reduction. In: IEEE proceedings on FIFTH international conference on advances in computing and communications (ICACC), Kochi, India 303–306

    Google Scholar 

  16. Mishra N, Chaudhary RK (2019) Design and development of an ultrathin triple band microwave absorber using miniaturized metamaterial structure for near unity absorption characteristics. Prog Electromagn Res 8(94):89–101

    Article  Google Scholar 

  17. Kaur KP, Upadhyaya T, Palandoken M, Gocen C (2019) Ultrathin dual-layer triple band flexible microwave metamaterial absorber for energy harvesting applications. Int J RF Microwave Comp Aided Eng 29:1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Divya, Sood, D. (2021). Ultrathin Compact Triple-Band Polarization-Insensitive Metamaterial Microwave Absorber. In: Marriwala, N., Tripathi, C.C., Kumar, D., Jain, S. (eds) Mobile Radio Communications and 5G Networks. Lecture Notes in Networks and Systems, vol 140. Springer, Singapore. https://doi.org/10.1007/978-981-15-7130-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7130-5_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7129-9

  • Online ISBN: 978-981-15-7130-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics