Skip to main content
Log in

Dual-Band Binary Metamaterial Absorber Based on Low-Permittivity All-Dielectric Resonance Surface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A binary-structured metamaterial absorber (BMA) consisting of a low-permittivity dual-layer all-dielectric resonance surface (ADRS) and reflector was simulated and experimentally validated. Analyses of relative impedance, electric/magnetic field and power loss density indicated that the proposed BMA exhibits two absorption peaks at 14.65 GHz and 16.61 GHz, resulting from the magnetic and electrical responses of ADRS, respectively. The dependences of absorption properties on the dimensions of the ADRS and material parameters of the ADRS are discussed. It is concluded that the upper layer of the ADRS acts as an impedance-matching layer directly influencing the absorption intensity, while the bottom layer offers frequency selectivity in the 13–15 GHz range. The current design uses a low-permittivity ADRS, with simplified design and easy preparation and is notably different from conventional ternary-structured metamaterial absorbers based on a metallic resonance surface. The simplicity of the proposed BMA makes it a promising low-cost ambient temperature alternative to conventional metamaterial absorbers and could open up practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  Google Scholar 

  2. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  Google Scholar 

  3. J. Garcia-Garcia, J. Bonache, I. Gil, F. Martin, M.C. Velazquez-Ahumada, and J. Martel, IEEE Trans. Microw. Theory Tech. 54, 2628 (2006).

    Article  Google Scholar 

  4. M.L. Si and X. Lv, Prog. Electromagn. Res. 83, 133 (2008).

    Article  Google Scholar 

  5. A. Turkmen, E. Ekmekci, and G. Turhan-Sayan, IET Microw. Antennas Propag. 6, 1102 (2012).

    Article  Google Scholar 

  6. F. Costa, S. Genovesi, and A. Monorchio, IEEE Trans. Microw. Theory Tech. 61, 146 (2013).

    Article  Google Scholar 

  7. N.L. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  8. H. Xiong, M.C. Tang, and J.S. Hong, J. Appl. Phys. 117, 207402 (2015).

    Article  Google Scholar 

  9. X.J. Huang, H.L. Yang, S.Q. Yu, J.X. Wang, M.H. Li, and Q.W. Ye, J. Appl. Phys. 113, 213516 (2013).

    Article  Google Scholar 

  10. S. Bhattacharyya and K.V. Srivastava, J. Appl. Phys. 115, 064508 (2014).

    Article  Google Scholar 

  11. Q.W. Ye, Y. Liu, H. Lin, M.H. Li, and H.L. Yang, Appl. Phys. A 107, 155 (2012).

    Article  Google Scholar 

  12. J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, and Y.P. Lee, Opt. Express 21, 9691 (2013).

    Article  Google Scholar 

  13. H.X. Xu, G.M. Wang, M.Q. Qi, J.G. Liang, J.Q. Gong, and Z.M. Xu, Phys. Rev. B 86, 3368 (2012).

    Google Scholar 

  14. L. Huang and H. Chen, Prog. Electromagn. Res. 113, 103 (2011).

    Article  Google Scholar 

  15. L. Peng, L.X. Ran, H.S. Chen, H.F. Zhang, J.A. Kong, and T.M. Grzegorczyk, Phys. Rev. Lett. 98, 57403 (2007).

    Google Scholar 

  16. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, Phys. Rev. Lett. 101, 027402 (2008).

    Article  Google Scholar 

  17. N.V. Dung, B.S. Tung, B.X. Khuyen, Y.J. Yoo, and Y.P. Lee, J. Korean Phys. Soc. 68, 1008 (2016).

    Article  Google Scholar 

  18. X.M. Liu, Q. Zhao, C.W. Lan, and J. Zhou, Appl. Phys. Lett. 103, 031910 (2013).

    Article  Google Scholar 

  19. X. Liu, K. Bi, B. Li, Q. Zhao, and J. Zhou, Opt. Express 24, 20454 (2016).

    Article  Google Scholar 

  20. X.M. Liu, C.W. Lan, K. Bi, B. Li, Q. Zhao, and J. Zhou, Appl. Phys. Lett. 109, 062902 (2016).

    Article  Google Scholar 

  21. F. Yu, J. Wang, J.F. Wang, H. Ma, H.L. Du, Z. Xu, and S.B. Qu, Appl. Phys. Lett. 107, 211906 (2015).

    Article  Google Scholar 

  22. J.B. Sun, L.Y. Liu, G.Y. Dong, and J. Zhou, Opt. Express 19, 21155 (2011).

    Article  Google Scholar 

  23. T.L. Wanghuang, W.J. Chen, Y.J. Huang, and G.J. Wen, AIP Adv. 3, 102118 (2013).

    Article  Google Scholar 

  24. D.V. Isakov, Q. Lei, F. Castles, C.J. Stevens, C.R.M. Grovenor, and P.S. Grant, Mater. Design 93, 423 (2016).

    Article  Google Scholar 

  25. F. Castles, D. Isakov, A. Lui, Q. Lei, C.E.J. Dancer, Y. Wang, J.M. Janurudin, S.C. Speller, C.R.M. Grovenor, and P.S. Grant, Sci. Rep. 6, 22714 (2016).

    Article  Google Scholar 

  26. Q. Wang, Y. Wang, X.Z. Tang, X.Z. Huang, Y.J. Xiong, and F. Zhang, J. Adv. Dielectr. 8, 1850021 (2018).

    Article  Google Scholar 

  27. R.E. Jones, F. Simonetti, and I.P. Bradley, J. Nondestruct. Eval. 31, 117 (2012).

    Article  Google Scholar 

  28. D.R. Smith, D.C. Vier, Th Koschny, and C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005).

    Article  Google Scholar 

  29. Z. Ma, C.T. Cao, Q.F. Liu, and J.B. Wang, Chin. Phys. Lett. 29, 38401 (2012).

    Article  Google Scholar 

  30. Q. Wang, X.Z. Tang, D. Zhou, Z.J. Du, and X.Z. Huang, IEEE Antennas Wirel. Propag. Lett. 16, 3200 (2017).

    Article  Google Scholar 

  31. W.R. Holland and D.G. Hall, Phys. Rev. Lett. 52, 1041 (1984).

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Defense Science and Technology Innovation Project Grant Nos. 1716313ZT01002601 and 1716313ZT009 052001; and the Science and Technology Plan Project of Hunan Province Grant No. 2015TP1007; and Initial Research Funding for Special Associate Professor by Central South University Grant No. 502045002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Jiang or Xiaozhong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, F., Xiong, Y. et al. Dual-Band Binary Metamaterial Absorber Based on Low-Permittivity All-Dielectric Resonance Surface. J. Electron. Mater. 48, 787–793 (2019). https://doi.org/10.1007/s11664-018-6796-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6796-2

Keywords

Navigation