Skip to main content

Advertisement

Log in

A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The electrochemical reduction of nitrogen to produce ammonia using sustainable and “green” materials and electricity has proven to be not only feasible, but promising. However, low catalytic activity and stability as well as poor product selectivity have hindered practical application. To address this, this review will provide a comprehensive presentation of the latest progress in the experimental investigation and fundamental understanding of nitrogen reduction reaction (NRR) for the production of ammonia as catalyzed by electrocatalysts and photocatalysts. In particular, the design, synthesis, characterization and performance validation of these catalysts are classified and analyzed in terms of their catalytic activity, stability and selectivity toward ammonia production. Reviewed electrocatalysts include metal/carbon, metal/metal oxide and metal oxide/carbon composites, and reviewed photocatalysts include semiconductor–semiconductor, semiconductor–metal, semiconductor–carbon and multicomponent heterojunctions. Furthermore, several challenges are discussed and possible research directions are proposed to facilitate further research and development to overcome the challenges in NRR toward practical application.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hadlocon, L.J., Zhao, L.: Production of ammonium sulfate fertilizer using acid wet scrubbers. Agric. Eng. Int. CIGR J. 2015, 41–51 (2015)

    Google Scholar 

  2. Giddey, S., Badwal, S.P.S., Kulkarni, A.: Review of electrochemical ammonia production technologies and materials. Int. J. Hydrog. Energy 38, 14576–14594 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054

    Article  CAS  Google Scholar 

  3. Foster, S.L., Bakovic, S.I.P., Duda, R.D., et al.: Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018). https://doi.org/10.1038/s41929-018-0092-7

    Article  Google Scholar 

  4. He, Y., Tan, Q., Lu, L., et al.: Metal–nitrogen–carbon catalysts foroxygen reduction in pem fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2, 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9

    Article  CAS  Google Scholar 

  5. Tian, N., Lu, B.A., Yang, X.D., et al.: Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 1, 54–83 (2018). https://doi.org/10.1007/s41918-018-0004-1

    Article  CAS  Google Scholar 

  6. Makridis, S.S.: Hydrogen storage and compression. Methane Hydrog. Energy Storage (2016). https://doi.org/10.1049/PBPO101E_ch1

    Article  Google Scholar 

  7. Lan, R., Irvine, J.T.S., Tao, S.: Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrog. Energy 37, 1482–1494 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.004

    Article  CAS  Google Scholar 

  8. Zamfirescu, C., Dincer, I.: Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process. Technol. 90, 729–737 (2009). https://doi.org/10.1016/j.fuproc.2009.02.004

    Article  CAS  Google Scholar 

  9. Little, D.J., Smith, M.R., Hamann, T.W.: Electrolysis of liquid ammonia for hydrogen generation. Energy Environ. Sci. 8, 2775–2781 (2015). https://doi.org/10.1039/c5ee01840d

    Article  CAS  Google Scholar 

  10. Zamfirescu, C., Dincer, I.: Using ammonia as a sustainable fuel. J. Power Sources 185, 459–465 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.097

    Article  CAS  Google Scholar 

  11. Williamson, J.P.H.: Annual reports section “A” (Inorganic Chemistry). Ind Inorgan. Chem. 79, 399–425 (1982). https://doi.org/10.1039/ic9827900399

    Article  Google Scholar 

  12. Liu, H. (ed.): Ammonia synthesis catalysts: innovation and practice. In: Ammonia Synthesis Catalysts, p. 896. World Scientific, Singapore (2013)

  13. Manjunatha, R., Karajić, A., Goldstein, V., et al.: Electrochemical ammonia generation directly from nitrogen and air using an iron-oxide/titania-based catalyst at ambient conditions. ACS Appl. Mater. Interfaces 11, 7981–7989 (2019). https://doi.org/10.1021/acsami.8b20692

    Article  CAS  PubMed  Google Scholar 

  14. Angeli, S.D., Turchetti, L., Monteleone, G., et al.: Environmental catalyst development for steam reforming of methane and model biogas at low temperature. Appl. Catal. B Environ. 181, 34–46 (2016). https://doi.org/10.1016/j.apcatb.2015.07.039

    Article  CAS  Google Scholar 

  15. De Peter Atkins, J.P.: Atkins’ Physical Chemistry, 8th edn. W. H. Freeman and Company New York, New York (2006)

    Google Scholar 

  16. Cao, N., Zheng, G.: Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 11, 2992–3008 (2018). https://doi.org/10.1007/s12274-018-1987-y

    Article  CAS  Google Scholar 

  17. Hoffman, B.M., Lukoyanov, D., Yang, Z.Y., et al.: Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014). https://doi.org/10.1021/cr400641x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue, X., Chen, R., Yan, C., et al.: Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res. 12, 1229–1249 (2019). https://doi.org/10.1007/s12274-018-2268-5

    Article  CAS  Google Scholar 

  19. Cui, X., Tang, C., Zhang, Q.: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1–25 (2018). https://doi.org/10.1002/aenm.201800369

    Article  CAS  Google Scholar 

  20. Ithisuphalap, K., Zhang, H., Guo, L., et al.: Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods 3, 1800352 (2019). https://doi.org/10.1002/smtd.201800352

    Article  CAS  Google Scholar 

  21. Liu, H.: Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Cuihua Xuebao/Chin. J. Catal. 35, 1619–1640 (2014). https://doi.org/10.1016/S1872-2067(14)60118-2

    Article  CAS  Google Scholar 

  22. Ye, L., Nayak-Luke, R., Bañares-Alcántara, R., et al.: Reaction: “Green” ammonia production. Chem 3, 712–714 (2017). https://doi.org/10.1016/j.chempr.2017.10.016

    Article  CAS  Google Scholar 

  23. Djurdjevic, I., Einsle, O., Decamps, L.: Nitrogenase cofactor: inspiration for model chemistry. Chem. Asian J. 12, 1447–1455 (2017). https://doi.org/10.1002/asia.201700478

    Article  CAS  PubMed  Google Scholar 

  24. Höskuldsson, Á.B., Abghoui, Y., Gunnarsdóttir, A.B., et al.: Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustain. Chem. Eng. 5, 10327–10333 (2017). https://doi.org/10.1021/acssuschemeng.7b02379

    Article  CAS  Google Scholar 

  25. Harris, D.F., Lukoyanov, D.A., Shaw, S., et al.: Mechanism of N2 reduction catalyzed by Fe-nitrogenase involves reductive elimination of H2. Biochemistry 57, 701–710 (2018). https://doi.org/10.1021/acs.biochem.7b01142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, S.J., Bao, D., Shi, M.M., et al.: Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017). https://doi.org/10.1002/adma.201700001

    Article  CAS  Google Scholar 

  27. Bao, D., Zhang, Q., Meng, F.L., et al.: Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1–5 (2017). https://doi.org/10.1002/adma.201604799

    Article  CAS  Google Scholar 

  28. Holladay, J.D., Hu, J., King, D.L., et al.: An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). https://doi.org/10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  29. Strait, R., Nagvekar, M.: Carbon dioxide capture and storage in the nitrogen and syngas industries. Nitrogen Syngas. 303, 3–5 (2010)

    Google Scholar 

  30. Hargreaves, J.S.J.: Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl. Petrochem. Res. 4, 3–10 (2014). https://doi.org/10.1007/s13203-014-0049-y

    Article  CAS  Google Scholar 

  31. Kong, J., Lim, A., Yoon, C., et al.: Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 5, 10986–10995 (2017). https://doi.org/10.1021/acssuschemeng.7b02890

    Article  CAS  Google Scholar 

  32. Nazemi, M., Panikkanvalappil, S.R., El-Sayed, M.A.: Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 49, 316–323 (2018). https://doi.org/10.1016/j.nanoen.2018.04.039

    Article  CAS  Google Scholar 

  33. Renner, J.N., Greenlee, L.F., Ayres, K.E., et al.: Electrochemical synthesis of ammonia: a low pressure, low temperature approach. Interface Mag. 24, 51–57 (2015). https://doi.org/10.1149/2.F04152if

    Article  CAS  Google Scholar 

  34. Manjunatha, R., Schechter, A.: Electrochemical synthesis of ammonia using ruthenium–platinum alloy at ambient pressure and low temperature. Electrochem. Commun. 90, 96–100 (2018). https://doi.org/10.1016/j.elecom.2018.04.008

    Article  CAS  Google Scholar 

  35. Pang, F., Wang, Z., Zhang, K., et al.: Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy 58, 834–841 (2019). https://doi.org/10.1016/j.nanoen.2019.02.019

    Article  CAS  Google Scholar 

  36. Suryanto, B.H.R., Kang, C.S.M., Wang, D., et al.: A rational electrode–electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. (2018). https://doi.org/10.1021/acsenergylett.8b00487

    Article  Google Scholar 

  37. Zhou, F., Azofra, L.M., Al-Agele, M., et al.: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017). https://doi.org/10.1039/C7EE02716H

    Article  CAS  Google Scholar 

  38. Lee, H.K., Koh, C.S.L., Lee, Y.H., et al.: Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, 1–9 (2018). https://doi.org/10.1126/sciadv.aar3208

    Article  CAS  Google Scholar 

  39. Shinagawa, T., Garcia-Esparza, A.T., Takanabe, K.: Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 1–21 (2015). https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  40. Liu, J.C., Ma, X.L., Li, Y., et al.: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1–9 (2018). https://doi.org/10.1038/s41467-018-03795-8

    Article  CAS  Google Scholar 

  41. Skúlason, E., Bligaard, T., Gudmundsdóttir, S., et al.: A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f

    Article  CAS  PubMed  Google Scholar 

  42. Shipman, M.A., Symes, M.D.: Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 286, 57–68 (2017). https://doi.org/10.1016/j.cattod.2016.05.008

    Article  CAS  Google Scholar 

  43. Ertl, G.: Reactions at surfaces: from atoms to complexity (nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008). https://doi.org/10.1002/anie.200800480

    Article  CAS  Google Scholar 

  44. Ertl, G.: Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1, 1247–1253 (1983). https://doi.org/10.1116/1.572299

    Article  CAS  Google Scholar 

  45. Yao, Y., Zhu, S., Wang, H., et al.: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101

    Article  CAS  PubMed  Google Scholar 

  46. Geng, Z., Liu, Y., Kong, X., et al.: Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018). https://doi.org/10.1002/adma.201803498

    Article  CAS  Google Scholar 

  47. Abghoui, Y., Skúlason, E.: Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 121, 6141–6151 (2017). https://doi.org/10.1021/acs.jpcc.7b00196

    Article  CAS  Google Scholar 

  48. Abghoui, Y., Garden, A.L., Howalt, J.G., et al.: Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal. 6, 635–646 (2016). https://doi.org/10.1021/acscatal.5b01918

    Article  CAS  Google Scholar 

  49. Abghoui, Y., Skúlason, E.: Electrochemical synthesis of ammonia via Mars–Van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal. Today 286, 78–84 (2017). https://doi.org/10.1016/j.cattod.2016.06.009

    Article  CAS  Google Scholar 

  50. Pandey, S., Mishra, S.B.: Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J. Sol Gel. Sci. Technol. 59, 73–94 (2011). https://doi.org/10.1007/s10971-011-2465-0

    Article  CAS  Google Scholar 

  51. De Clippel, F., Dusselier, M., Van De Vyver, S., et al.: Tailoring nanohybrids and nanocomposites for catalytic applications. Green Chem. 15, 1398–1430 (2013). https://doi.org/10.1039/c3gc37141g

    Article  CAS  Google Scholar 

  52. Xie, Z., Liu, Z., Wang, Y., et al.: An overview of recent development in composite catalysts from porous materials for various reactions and processes. Int. J. Mol. Sci. 11, 2152–2187 (2010). https://doi.org/10.3390/ijms11052152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nanko, M.: Definitions and categories of hybrid materials. AZojomo. 6, 1–8 (2009). https://doi.org/10.2240/azojomo0288

    Article  Google Scholar 

  54. Fitzer, E., Manocha, L.M.: Applications of carbon/carbon composites. In: Carbon Reinforcements and Carbon/Carbon Composites, pp. 310–336. Springer, Berlin (1998) https://doi.org/10.1007/978-3-642-58745-0_10

  55. Haibo, O., Cuiyan, L., Jianfeng, H., et al.: Synthesis of carbon/carbon composites by hydrothermal carbonization using starch as carbon source. RSC Adv. 4, 12586–12589 (2014). https://doi.org/10.1039/c3ra47857b

    Article  CAS  Google Scholar 

  56. Xu, Y., Chen, L., Wang, X., et al.: Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale 7, 10559–10583 (2015). https://doi.org/10.1039/c5nr02216a

    Article  CAS  PubMed  Google Scholar 

  57. Ray, C., Pal, T.: Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 5, 9465–9487 (2017). https://doi.org/10.1039/c7ta02116j

    Article  CAS  Google Scholar 

  58. Rodeghiero, E.D., Moore, B.C., Wolkenberg, B.S., et al.: Sol–gel synthesis of ceramic matrix composites. Mater. Sci. Eng. A 244, 11–21 (1998). https://doi.org/10.1016/S0921-5093(97)00821-6

    Article  Google Scholar 

  59. Fan, J.J., Fan, Y.J., Wang, R.X., et al.: A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. J. Mater. Chem. A 5, 19467–19475 (2017). https://doi.org/10.1039/c7ta05102f

    Article  CAS  Google Scholar 

  60. Cao, Y., Mao, S., Li, M., et al.: Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal. 7, 8090–8112 (2017). https://doi.org/10.1021/acscatal.7b02335

    Article  CAS  Google Scholar 

  61. Du, J., Cheng, F., Wang, S., et al.: M(Salen)-derived nitrogen-doped M/C (M = Fe Co, Ni) porous nanocomposites for electrocatalytic oxygen reduction. Sci. Rep. 4, 4386 (2014). https://doi.org/10.1038/srep04386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, N., Li, Y., Guo, Z., et al.: Synthesis of Fe, Co incorporated in P-doped porous carbon using a metal–organic framework (MOF) precursor as stable catalysts for oxygen reduction reaction. J. Electrochem. Soc. 165, G3080–G3086 (2018). https://doi.org/10.1149/2.0131812jes

    Article  CAS  Google Scholar 

  63. Zhang, J., Byeon, A., Lee, J.W.: Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide. Chem. Commun. 50, 6349–6352 (2014). https://doi.org/10.1039/c4cc01903b

    Article  CAS  Google Scholar 

  64. Wang, H., Wang, L., Wang, Q., et al.: Ambient electrosynthesis of ammonia: electrode porosity and composition engineering. Angew. Chem. Int. Ed. 57, 12360–12364 (2018). https://doi.org/10.1002/anie.201805514

    Article  CAS  Google Scholar 

  65. Montoya, J.H., Tsai, C., Vojvodic, A., et al.: The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. Chemsuschem 8, 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322

    Article  CAS  PubMed  Google Scholar 

  66. Beltrán-Suito, R., Menezes, P.W., Driess, M.: Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting. J. Mater. Chem. A 7, 15749–15756 (2019). https://doi.org/10.1039/c9ta04583j

    Article  CAS  Google Scholar 

  67. Tsuji, E., Imanishi, A., Fukui, K.I., et al.: Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim. Acta 56, 2009–2016 (2011). https://doi.org/10.1016/j.electacta.2010.11.062

    Article  CAS  Google Scholar 

  68. Shao, Q., Wang, P., Huang, X.: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 29, 1–23 (2019). https://doi.org/10.1002/adfm.201806419

    Article  CAS  Google Scholar 

  69. Chen, P., Zhang, N., Wang, S., et al.: Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. 116, 6635–6640 (2019). https://doi.org/10.1073/pnas.1817881116

    Article  CAS  PubMed  Google Scholar 

  70. Guo, Y., Yao, Z., Timmer, B.J.J., et al.: Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range. Nano Energy 62, 282–288 (2019). https://doi.org/10.1016/j.nanoen.2019.05.051

    Article  CAS  Google Scholar 

  71. Geng, Z., Liu, Y., Kong, X., et al.: Achieving a record-high yield rate of 120.9 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 2–7 (2018). https://doi.org/10.1002/adma.201803498

    Article  CAS  Google Scholar 

  72. Wang, X., Wang, W., Qiao, M., et al.: Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 63, 1246–1253 (2018). https://doi.org/10.1016/j.scib.2018.07.005

    Article  CAS  Google Scholar 

  73. Han, L., Liu, X., Chen, J., et al.: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201811728

    Article  CAS  Google Scholar 

  74. Yin, H., Li, S.L., Gan, L.Y., et al.: Pt-embedded in monolayer g-C3N4 as a promising single-atom electrocatalyst for ammonia synthesis. J. Mater. Chem. A 7, 11908–11914 (2019). https://doi.org/10.1039/c9ta01624d

    Article  CAS  Google Scholar 

  75. Cao, Y., Gao, Y., Zhou, H., et al.: Highly efficient ammonia synthesis electrocatalyst: single Ru atom on naturally nanoporous carbon materials (Adv. Theory Simul. 5/2018). Adv. Theory Simul. 1, 1870012 (2018). https://doi.org/10.1002/adts.201870012

    Article  Google Scholar 

  76. Ling, C., Bai, X., Ouyang, Y., et al.: Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 122, 16842–16847 (2018). https://doi.org/10.1021/acs.jpcc.8b05257

    Article  CAS  Google Scholar 

  77. Zhao, J., Chen, Z.: Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J. Am. Chem. Soc. 139, 12480–12487 (2017). https://doi.org/10.1021/jacs.7b05213

    Article  CAS  PubMed  Google Scholar 

  78. Liu, C., Li, Q., Wu, C., et al.: Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141, 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165

    Article  CAS  PubMed  Google Scholar 

  79. Cao, Y., Deng, S., Fang, Q., et al.: Single and double boron atoms doped nanoporous C2N–H2D electrocatalysts for highly efficient N2 reduction reaction: a density functional theory study. Nanotechnology 30, 335403 (2019). https://doi.org/10.1088/1361-6528/ab1d01

    Article  CAS  PubMed  Google Scholar 

  80. Zhang, X., Chen, A., Zhang, Z., et al.: Double-atom catalysts transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J. Mater. Chem. A 6, 18599–18604 (2018). https://doi.org/10.1039/c8ta07683a

    Article  CAS  Google Scholar 

  81. Liu, C., Li, Q., Zhang, J., et al.: Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. J. Mater. Chem. A 7, 4771–4776 (2019). https://doi.org/10.1039/c8ta08219g

    Article  CAS  Google Scholar 

  82. Huang, Y., Yang, T., Yang, L., et al.: Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 7, 15173–151810 (2019). https://doi.org/10.1039/C9TA02947H

    Article  CAS  Google Scholar 

  83. Li, B., Li, L., Li, B., et al.: Theoretical screening of single-atom-embedded MoSSe nanosheets for electrocatalytic N2 fixation. J. Phys. Chem. C 123, 14501–14507 (2019). https://doi.org/10.1021/acs.jpcc.9b02657

    Article  CAS  Google Scholar 

  84. Gao, Y., Zhuo, H., Cao, Y., et al.: A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chin. J. Catal. 40, 152–159 (2019). https://doi.org/10.1016/S1872-2067(18)63197-3

    Article  CAS  Google Scholar 

  85. Yin, F., Lin, X., He, X., et al.: High Faraday efficiency for electrochemical nitrogen reduction reaction on Co@N-doped carbon derived from a metal–organic framework under ambient conditions. Mater. Lett. 248, 109–113 (2019). https://doi.org/10.1016/j.matlet.2019.04.011

    Article  CAS  Google Scholar 

  86. Yan, P., Guo, W., Liang, Z., et al.: Highly efficient K-Fe/C catalysts derived from metal–organic frameworks towards ammonia synthesis. Nano Res. 12, 2341–2347 (2019). https://doi.org/10.1007/s12274-019-2349-0

    Article  CAS  Google Scholar 

  87. Song, P., Kang, L., Wang, H., et al.: Nitrogen(N), Phosphorus(P)-Codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 11, 12408–12414 (2019). https://doi.org/10.1021/acsami.8b20472

    Article  CAS  PubMed  Google Scholar 

  88. Goswami, C., Hazarika, K.K., Bharali, P.: Transition metal oxide nanocatalysts for oxygen reduction reaction. Mater. Sci. Energy Technol. 1, 117–128 (2018). https://doi.org/10.1016/j.mset.2018.06.005

    Article  Google Scholar 

  89. Wang, J., Liu, Y., Zhang, H., et al.: Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: experimental and DFT studies. Catal. Sci. Technol. 9, 4248–4254 (2019). https://doi.org/10.1039/c9cy00907h

    Article  CAS  Google Scholar 

  90. Zhang, R., Ren, X., Shi, X., et al.: Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 10, 28251–28255 (2018). https://doi.org/10.1021/acsami.8b06647

    Article  CAS  PubMed  Google Scholar 

  91. Yang, L., Wu, T., Zhang, R., et al.: Insights into defective TiO2 in electrocatalytic N2 reduction: combining theoretical and experimental studies. Nanoscale 11, 1555–1562 (2019). https://doi.org/10.1039/c8nr09564g

    Article  CAS  PubMed  Google Scholar 

  92. Wang, Y., Jia, K., Pan, Q., et al.: Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions. ACS Sustain. Chem. Eng. 7, 117–122 (2019). https://doi.org/10.1021/acssuschemeng.8b05332

    Article  CAS  Google Scholar 

  93. Qin, Q., Zhao, Y., Schmallegger, M., et al.: Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew. Chemie Int. Ed. 58, 13101–13106 (2019). https://doi.org/10.1002/anie.201906056

    Article  CAS  Google Scholar 

  94. Zhang, R., Han, J., Zheng, B., et al.: Metal–organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions. Inorg. Chem. Front. 6, 391–395 (2019). https://doi.org/10.1039/c8qi01145a

    Article  CAS  Google Scholar 

  95. Xia, L., Wu, X., Wang, Y., et al.: S-doped carbon nanospheres: an efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 3, 1800251 (2019). https://doi.org/10.1002/smtd.201800251

    Article  CAS  Google Scholar 

  96. Chu, K., Liu, Y.P., Wang, J., et al.: NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Appl. Energy Mater. 2, 2288–2295 (2019). https://doi.org/10.1021/acsaem.9b00102

    Article  CAS  Google Scholar 

  97. Wang, F., Liu, Y.P., Zhang, H., et al.: CuO/graphene nanocomposite for nitrogen reduction reaction. ChemCatChem 11, 1441–1447 (2019). https://doi.org/10.1002/cctc.201900041

    Article  CAS  Google Scholar 

  98. Xie, H., Geng, Q., Li, X., et al.: Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst toward artificial N2 conversion to NH3 under ambient conditions. Chem. Commun. 55, 10717–10720 (2019). https://doi.org/10.1039/C9CC05309C

    Article  CAS  Google Scholar 

  99. Xia, L., Li, B., Zhang, Y., et al.: Cr2O3 nanoparticle-reduced graphene oxide hybrid: a highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 58, 2257–2260 (2019). https://doi.org/10.1021/acs.inorgchem.8b03143

    Article  CAS  PubMed  Google Scholar 

  100. Chen, S., Perathoner, S., Ampelli, C., et al.: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533

    Article  CAS  Google Scholar 

  101. Chen, S., Perathoner, S., Ampelli, C., et al.: Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor. ACS Sustain. Chem. Eng. 5, 7393–7400 (2017). https://doi.org/10.1021/acssuschemeng.7b01742

    Article  CAS  Google Scholar 

  102. Xu, Y., Yubin, P., Dearn, K.D., et al.: Nano-MoS2 and graphene additives in oil for tribological applications metadata of the chapter that will be visualized online (2018). https://doi.org/10.1007/978-3-319-60630-9

  103. Gates, B.C.: Supported metal clusters: synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995). https://doi.org/10.1021/cr00035a003

    Article  CAS  Google Scholar 

  104. Yan, L., Rui, X., Chen, G., et al.: Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale 8, 8443–8465 (2016). https://doi.org/10.1039/c6nr01340f

    Article  CAS  PubMed  Google Scholar 

  105. Jia, Q., Ghoshal, S., Li, J., et al.: Metal and metal oxide interactions and their catalytic consequences for oxygen reduction reaction. J. Am. Chem. Soc. 139, 7893–7903 (2017). https://doi.org/10.1021/jacs.7b02378

    Article  CAS  PubMed  Google Scholar 

  106. Monyoncho, E.A., Ntais, S., Brazeau, N., et al.: Role of the metal-oxide support in the catalytic activity of pd nanoparticles for ethanol electrooxidation in alkaline media. ChemElectroChem 3, 218–227 (2016). https://doi.org/10.1002/celc.201500432

    Article  CAS  Google Scholar 

  107. Cheng, S., Gao, Y.J., Yan, Y.L., et al.: Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2. J. Energy Chem. 39, 144–151 (2019). https://doi.org/10.1016/j.jechem.2019.01.020

    Article  Google Scholar 

  108. Liu, J.C., Ma, X.L., Li, Y., et al.: Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018). https://doi.org/10.1038/s41467-018-03795-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Azofra, L.M., Sun, C., Cavallo, L., et al.: Feasibility of N2 binding and reduction to ammonia on Fe-deposited MoS2 2D sheets: a DFT study. Chem. Eur. J. 23, 8275–8279 (2017). https://doi.org/10.1002/chem.201701113

    Article  CAS  PubMed  Google Scholar 

  110. Nazemi, M., El-Sayed, M.A.: Electrochemical synthesis of ammonia from N2 and H2O under ambient conditions using pore-size-controlled hollow gold nanocatalysts with tunable plasmonic properties. J. Phys. Chem. Lett. 9, 5160–5166 (2018). https://doi.org/10.1021/acs.jpclett.8b02188

    Article  CAS  PubMed  Google Scholar 

  111. Nazemi, M., El-Sayed, M.A.: The role of oxidation of silver in bimetallic gold–silver nanocages on electrocatalytic activity of nitrogen reduction reaction. J. Phys. Chem. C 123, 11422–11427 (2019). https://doi.org/10.1021/acs.jpcc.9b01107

    Article  CAS  Google Scholar 

  112. Zhao, J., Zhang, L., Xie, X.Y., et al.: Ti3C2Tx (T = F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 6, 24031–24035 (2018). https://doi.org/10.1039/c8ta09840a

    Article  CAS  Google Scholar 

  113. Li, L., Li, G.D., Yan, C., et al.: Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011). https://doi.org/10.1002/anie.201102320

    Article  CAS  Google Scholar 

  114. Ding, J., Dai, Z., Qin, F., et al.: Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal. B Environ. 205, 281–291 (2017). https://doi.org/10.1016/j.apcatb.2016.12.018

    Article  CAS  Google Scholar 

  115. Li, R.: Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis. Cuihua Xuebao/Chin. J. Catal. 39, 1180–1188 (2018). https://doi.org/10.1016/S1872-2067(18)63104-3

    Article  CAS  Google Scholar 

  116. Wang, H., Zhang, L., Chen, Z., et al.: Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 43, 5234–5244 (2014). https://doi.org/10.1039/c4cs00126e

    Article  CAS  PubMed  Google Scholar 

  117. Ye, L., Han, C., Ma, Z., et al.: Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem. Eng. J. 307, 311–318 (2017). https://doi.org/10.1016/j.cej.2016.08.102

    Article  CAS  Google Scholar 

  118. Tennakone, K., Fernando, C.A.N., Wickramanayake, S., et al.: Photocatalytic reduction of nitrogen to ammonia with coprecipitated Fe(III) and Ti(IV) hydrous oxides. Sol. Energy Mater. 17, 47–53 (1988). https://doi.org/10.1016/0165-1633(88)90036-6

    Article  CAS  Google Scholar 

  119. Tennakone, K., Thaminimulla, C.T.K., Kiridena, W.C.B.: Nitrogen photoreduction by coprecipitated hydrous oxides of samarium(iii) and vanadium(III). Langmuir 9, 723–726 (1993). https://doi.org/10.1021/la00027a019

    Article  CAS  Google Scholar 

  120. Tennakone, K., Thaminimulla, C.T.K., Bandara, J.M.S.: Nitrogen photoreduction by vanadium(III)-substituted hydrous ferric oxide. J. Photochem. Photobiol. A Chem. 68, 131–135 (1992). https://doi.org/10.1016/1010-6030(92)85176-U

    Article  CAS  Google Scholar 

  121. Liang, H., Zou, H., Hu, S.: Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New J. Chem. 41, 8920–8926 (2017). https://doi.org/10.1039/c7nj01848g

    Article  CAS  Google Scholar 

  122. Zhang, Q., Hu, S., Fan, Z., et al.: Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalt. Trans. 45, 3497–3505 (2016). https://doi.org/10.1039/c5dt04901f

    Article  CAS  Google Scholar 

  123. Liu, Q., Ai, L., Jiang, J.: MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 6, 4102–4110 (2018). https://doi.org/10.1039/c7ta09350k

    Article  CAS  Google Scholar 

  124. Xiao, C., Zhang, L., Wang, K., et al.: A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Appl. Catal. B Environ. 239, 260–267 (2018). https://doi.org/10.1016/j.apcatb.2018.08.012

    Article  CAS  Google Scholar 

  125. Diarmand-Khalilabad, H., Habibi-Yangjeh, A., Seifzadeh, D., et al.: g-C3N4 nanosheets decorated with carbon dots and CdS nanoparticles: novel nanocomposites with excellent nitrogen photofixation ability under simulated solar irradiation. Ceram. Int. 45, 2542–2555 (2019). https://doi.org/10.1016/j.ceramint.2018.10.185

    Article  CAS  Google Scholar 

  126. Cao, S., Zhou, N., Gao, F., et al.: All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B Environ. 218, 600–610 (2017). https://doi.org/10.1016/j.apcatb.2017.07.013

    Article  CAS  Google Scholar 

  127. Ranjit, K.T., Viswanathan, B.: Photocatalytic reduction of dinitrogen to ammonia. Indian J. Chem. Sect. A Inorgan. Phys. Theor. Anal. Chem. 35, 443–453 (1996). https://doi.org/10.1016/1010-6030(95)04290-3

    Article  Google Scholar 

  128. Miyama, H., Fujii, N., Nagae, Y.: Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem. Phys. Lett. 74, 523–524 (1980). https://doi.org/10.1016/0009-2614(80)85266-3

    Article  CAS  Google Scholar 

  129. Rao, N.N., Dube, S., Manjubala, et al.: Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Appl. Catal. B, Environ. 5, 33–42 (1994). https://doi.org/10.1016/0926-3373(94)00042-5

  130. Ileperuma, O.A., Weerasinghe, F.N.S., Lewke Bandara, T.S.: Photoinduced oxidative nitrogen fixation reactions on semiconductor suspensions. Sol. Energy Mater. 19, 409–414 (1989). https://doi.org/10.1016/0165-1633(89)90035-X

    Article  CAS  Google Scholar 

  131. Ding, J., Zhong, Q., Gu, H.: Iron-titanium dioxide composite nanoparticles prepared with an energy effective method for efficient visible-light-driven photocatalytic nitrogen reduction to ammonia. J. Alloys Compd. 746, 147–152 (2018). https://doi.org/10.1016/j.jallcom.2018.01.362

    Article  CAS  Google Scholar 

  132. Zhao, Z., Hong, S., Yan, C., et al.: Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites. Chem. Commun. 55, 7171–7174 (2019). https://doi.org/10.1039/c9cc02291k

    Article  CAS  Google Scholar 

  133. Yang, J., Guo, Y., Jiang, R., et al.: High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 140, 8497–8508 (2018). https://doi.org/10.1021/jacs.8b03537

    Article  CAS  PubMed  Google Scholar 

  134. Xiao, C., Hu, H., Zhang, X., et al.: Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia. ACS Sustain. Chem. Eng. 5, 10858–10863 (2017). https://doi.org/10.1021/acssuschemeng.7b02788

    Article  CAS  Google Scholar 

  135. Zeng, H., Terazono, S., Tanuma, T.: A novel catalyst for ammonia synthesis at ambient temperature and pressure: visible light responsive photocatalyst using localized surface plasmon resonance. Catal. Commun. 59, 40–44 (2015). https://doi.org/10.1016/j.catcom.2014.09.034

    Article  CAS  Google Scholar 

  136. Oshikiri, T., Ueno, K., Misawa, H.: Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014). https://doi.org/10.1002/anie.201404748

    Article  CAS  Google Scholar 

  137. Gao, X., Shang, Y., Liu, L., et al.: Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation. J. Colloid Interface Sci. 533, 649–657 (2019). https://doi.org/10.1016/j.jcis.2018.08.091

    Article  CAS  PubMed  Google Scholar 

  138. Brown, K.A., Harris, D.F., Wilker, M.B., et al.: Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016). https://doi.org/10.1126/science.aaf2091

    Article  CAS  PubMed  Google Scholar 

  139. Schäfer, S., Wyrzgol, S.A., Caterino, R., et al.: Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity. J. Am. Chem. Soc. 134, 12528–12535 (2012). https://doi.org/10.1021/ja3020132

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, N., Zhang, Y., Yang, M., et al.: A critical and benchmark comparison on graphene-, carbon nanotube-, and fullerene-semiconductor nanocomposites as visible light photocatalysts for selective oxidation. J. Catal. 299, 210–221 (2013). https://doi.org/10.1016/j.jcat.2012.11.021

    Article  CAS  Google Scholar 

  141. Li, X., Wang, W., Jiang, D., et al.: Efficient solar-driven nitrogen fixation over carbon–tungstic-acid hybrids. Chem. Eur. J. 22, 13819–13822 (2016). https://doi.org/10.1002/chem.201603277

    Article  CAS  PubMed  Google Scholar 

  142. Li, C., Wang, T., Zhao, Z.J., et al.: Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57, 5278–5282 (2018). https://doi.org/10.1002/anie.201713229

    Article  CAS  Google Scholar 

  143. Oshikiri, T., Ueno, K., Misawa, H.: Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55, 3942–3946 (2016). https://doi.org/10.1002/anie.201511189

    Article  CAS  Google Scholar 

  144. Ali, M., Zhou, F., Chen, K., et al.: Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 1–5 (2016). https://doi.org/10.1038/ncomms11335

    Article  CAS  Google Scholar 

  145. Hoshino, K.: New avenues in dinitrogen fixation research. Chem. Eur. J. 7, 2727–2731 (2001). https://doi.org/10.1002/1521-3765(20010702)7:13%3c2727:AID-CHEM2727%3e3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  146. Hoshino, K., Kuchii, R., Ogawa, T.: Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl. Catal. B Environ. 79, 81–88 (2008). https://doi.org/10.1016/j.apcatb.2007.10.007

    Article  CAS  Google Scholar 

  147. Ogawa, T., Kitamura, T., Shibuya, T., et al.: Characterization and material conditions of conducting polymer/titanium oxide hybrid systems used for dinitrogen fixation under ordinary pressure and temperature. Electrochem. Commun. 6, 55–60 (2004). https://doi.org/10.1016/j.elecom.2003.10.015

    Article  CAS  Google Scholar 

  148. Hoshino, K., Inui, M., Kitamura, T., et al.: Fixation of dinitrogen to a mesoscale solid salt using a titanum oxide/conducting polymer system. Angew. Chem. Int. Ed. 39, 2509–2512 (2000). https://doi.org/10.1002/1521-3773(20000717)39:14%3c2509:AID-ANIE2509%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  149. McPherson, I.J., Sudmeier, T., Fellowes, J., et al.: Materials for electrochemical ammonia synthesis. Dalt. Trans. 48, 1562–1568 (2019). https://doi.org/10.1039/c8dt04019b

    Article  CAS  Google Scholar 

  150. Wang, M., Liu, S., Qian, T., et al.: Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 10, 1–8 (2019). https://doi.org/10.1038/s41467-018-08120-x

    Article  CAS  Google Scholar 

  151. Shi, M.-M., Bao, D., Wulan, B.-R., et al.: Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017). https://doi.org/10.1002/adma.201606550

    Article  CAS  Google Scholar 

  152. Yang, X., Nash, J., Anibal, J., et al.: Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 140, 13387–13391 (2018). https://doi.org/10.1021/jacs.8b08379

    Article  CAS  PubMed  Google Scholar 

  153. Liu, J., Kelley, M.S., Wu, W., et al.: Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. USA 113, 5530–5535 (2016). https://doi.org/10.1073/pnas.1605512113

    Article  CAS  PubMed  Google Scholar 

  154. Andersen, S.Z., Čolić, V., Yang, S., et al.: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). https://doi.org/10.1038/s41586-019-1260-x

    Article  CAS  PubMed  Google Scholar 

  155. Cheng, H., Ding, L.X., Chen, G.F., et al.: Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 30, 1–7 (2018). https://doi.org/10.1002/adma.201803694

    Article  CAS  Google Scholar 

  156. Li, X.F., Li, Q.K., Cheng, J., et al.: Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 138, 8706–8709 (2016). https://doi.org/10.1021/jacs.6b04778

    Article  CAS  PubMed  Google Scholar 

  157. Shi, M.M., Bao, D., Li, S.J., et al.: Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 8, 1800124 (2018). https://doi.org/10.1002/aenm.201800124

    Article  CAS  Google Scholar 

  158. Qin, Q., Heil, T., Antonietti, M., et al.: Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2, 1800202 (2018). https://doi.org/10.1002/smtd.201800202

    Article  CAS  Google Scholar 

  159. He, T., Matta, S.K., Du, A.: Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 21, 1546–1551 (2019). https://doi.org/10.1039/c8cp06978f

    Article  CAS  PubMed  Google Scholar 

  160. Zheng, X., Zhang, Z., Li, X., et al.: MnO–carbon nanofiber composite material toward electro-chemical N2 fixation under ambient conditions. New J. Chem. 43, 7932–7935 (2019). https://doi.org/10.1039/c9nj00869a

    Article  CAS  Google Scholar 

  161. Huang, C., Shang, L., Han, P., et al.: Electrochemical N2 fixation by Cu-modified iron oxide dendrites. J. Colloid Interface Sci. 552, 312–318 (2019). https://doi.org/10.1016/j.jcis.2019.05.045

    Article  CAS  PubMed  Google Scholar 

  162. Li, L., Wang, Y., Vanka, S., et al.: Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity. Angew. Chem. Int. Ed. 56, 8701–8705 (2017). https://doi.org/10.1002/anie.201703301

    Article  CAS  Google Scholar 

  163. Lu, Y., Yang, Y., Zhang, T., et al.: Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10, 10507–10515 (2016). https://doi.org/10.1021/acsnano.6b06472

    Article  CAS  PubMed  Google Scholar 

  164. Cong, L., Yu, Z., Liu, F., et al.: Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions. Catal. Sci. Technol. 9, 1208–1214 (2019). https://doi.org/10.1039/c8cy02316f

    Article  CAS  Google Scholar 

  165. Hui, L., Xue, Y., Yu, H., et al.: Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 141, 10677–10683 (2019). https://doi.org/10.1021/jacs.9b03004

    Article  CAS  PubMed  Google Scholar 

  166. Zhao, X., Yin, F., Liu, N., et al.: Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 52, 10175–10185 (2017). https://doi.org/10.1007/s10853-017-1176-5

    Article  CAS  Google Scholar 

  167. Zhang, X., Liu, Q., Shi, X., et al.: TiO2 nanoparticles-reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 6, 17303–17306 (2018). https://doi.org/10.1039/c8ta05627g

    Article  CAS  Google Scholar 

  168. Li, Y., Kong, Y., Hou, Y., et al.: In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation. ACS Sustain. Chem. Eng. 7, 8853–8859 (2019). https://doi.org/10.1021/acssuschemeng.9b00852

    Article  CAS  Google Scholar 

  169. Tao, H., Choi, C., Ding, L.X., et al.: Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 5, 204–214 (2019). https://doi.org/10.1016/j.chempr.2018.10.007

    Article  CAS  Google Scholar 

  170. Hu, L., Khaniya, A., Wang, J., et al.: Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 8, 9312–9319 (2018). https://doi.org/10.1021/acscatal.8b02585

    Article  CAS  Google Scholar 

  171. Nazemi, M., El-Sayed, M.A.: Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au–Ag2O nanocages. Nano Energy 63, 103886 (2019). https://doi.org/10.1016/j.nanoen.2019.103886

    Article  CAS  Google Scholar 

  172. Lv, J., Wu, S., Tian, Z., et al.: Construction of PdO–Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction. J. Mater. Chem. A 7, 12627–12634 (2019). https://doi.org/10.1039/c9ta02045d

    Article  CAS  Google Scholar 

  173. Lv, C., Yan, C., Chen, G., et al.: An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018). https://doi.org/10.1002/anie.201801538

    Article  CAS  Google Scholar 

  174. Zhang, J., Yang, L., Wang, H., et al.: In situ hydrothermal growth of TiO2 nanoparticles on a conductive Ti3C2Tx MXene nanosheet: a synergistically active Ti-based nanohybrid electrocatalyst for enhanced N2 reduction to NH3 at ambient conditions. Inorg. Chem. 58, 5414–5418 (2019). https://doi.org/10.1021/acs.inorgchem.9b00606

    Article  CAS  PubMed  Google Scholar 

  175. Liu, X., Jang, H., Li, P., et al.: Antimony-based composites loaded on phosphorus-doped carbon for boosting faradaic efficiency of the electrochemical nitrogen reduction reaction. Angew. Chemie Int. Ed. 58, 13329–13334 (2019). https://doi.org/10.1002/anie.201906521

    Article  CAS  Google Scholar 

  176. Wang, Y., Wei, W., Li, M., et al.: In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2 photofixation ability under visible light. RSC Adv. 7, 18099–18107 (2017). https://doi.org/10.1039/c7ra00097a

    Article  CAS  Google Scholar 

  177. Tennakone, K., Punchihewa, S., Tantrigoda, R.: Nitrogen photoreduction with cuprous chloride coated hydrous cuprous oxide. Sol. Energy Mater. 18, 217–221 (1989). https://doi.org/10.1016/0165-1633(89)90055-5

    Article  CAS  Google Scholar 

  178. Huang, P., Liu, W., He, Z., et al.: Single atom accelerates ammonia photosynthesis. Sci. China Chem. 61, 1187–1196 (2018). https://doi.org/10.1007/s11426-018-9273-1

    Article  CAS  Google Scholar 

  179. Yang, Y., Zhang, T., Ge, Z., et al.: Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon N. Y. 124, 72–78 (2017). https://doi.org/10.1016/j.carbon.2017.07.014

    Article  CAS  Google Scholar 

  180. Hu, S., Zhang, W., Bai, J., et al.: Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv. 6, 25695–25702 (2016). https://doi.org/10.1039/c5ra28123g

    Article  CAS  Google Scholar 

  181. Zheng, J., Lyu, Y., Qiao, M., et al.: Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem. Int. Ed. 58, 18604–18609 (2019). https://doi.org/10.1002/anie.201909477

    Article  CAS  Google Scholar 

  182. Zheng, J., Lyu, Y., Qiao, M., et al.: Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem. 5, 617–633 (2019). https://doi.org/10.1016/j.chempr.2018.12.003

    Article  CAS  Google Scholar 

  183. Zhao, Y., Shi, R., Bian, X., et al.: Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates. Adv. Sci. 6, 1802109 (2019). https://doi.org/10.1002/advs.201802109

    Article  CAS  Google Scholar 

  184. Verdouw, H., Van Echteld, C.J.A., Dekkers, E.M.: Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 12, 78–81 (1977). https://doi.org/10.1016/0043-1354(78)90107-0

    Article  Google Scholar 

  185. Zhou, L., Boyd, C.E.: Comparison of nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture 450, 187–193 (2016). https://doi.org/10.1016/j.aquaculture.2015.07.022

    Article  CAS  Google Scholar 

  186. LeDuy, A., Samson, R.: Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge. Biotechol. Lett. 4, 303–306 (1982). https://doi.org/10.1007/BF00132830

    Article  CAS  Google Scholar 

  187. Cui, X., Tang, C., Zhang, Q.: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 29, 1–25 (2018). https://doi.org/10.1002/aenm.201800369

    Article  CAS  Google Scholar 

  188. Greenlee, L.F., Renner, J.N., Foster, S.L.: The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 8, 7820–7827 (2018). https://doi.org/10.1021/acscatal.8b02120

    Article  CAS  Google Scholar 

  189. Hu, B., Hu, M., Seefeldt, L., et al.: Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition? ACS Energy Lett. 4, 1053–1054 (2019). https://doi.org/10.1021/acsenergylett.9b00648

    Article  CAS  Google Scholar 

  190. Chen, G.F., Ren, S., Zhang, L., et al.: Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods 3, 1800337 (2018). https://doi.org/10.1002/smtd.201800337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51602189, 51803116), the Shanghai Sailing Program (18YF1408600), the international fellowship for Ph.D. program of Shanghai University and financial support from Leoch International, the Xijiang talent program and the Zhaoqing Xijiang Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yan or Jiujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, R., Karajić, A., Liu, M. et al. A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives. Electrochem. Energ. Rev. 3, 506–540 (2020). https://doi.org/10.1007/s41918-020-00069-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-020-00069-0

Keywords

Navigation