Skip to main content

Advertisement

Log in

Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Proton exchange membrane fuel cells (PEMFCs) are leading candidates in the utilization of clean energy resources for application in transportation, stationary, and portable devices. In PEMFCs, cathode catalysts are crucial for overall performance and durability due to kinetically slow oxygen reduction reactions (ORR). Because platinum (Pt), a state-of-the-art ORR catalyst, is rare and expensive, the development of high-performance platinum metal group (PGM)-free catalysts is highly desirable for future fuel cell technologies. Among the various PGM-free catalyst formulations, metal and nitrogen co-doped carbon (M-N-C, M: Fe, Co, or Mn) catalysts have exhibited encouraging activity and stability in acidic media for ORR and possess great potential to replace Pt in the future. Therefore, based on our extensive experience in the field of ORR catalysis, this review will comprehensively summarize the basic principles in the design and synthesis of M-N-C catalysts for durable, inexpensive, and high-performance PEMFCs with an emphasis on Co- and Mn-N-C catalysts to avoid Fenton reactions between Fe2+ and H2O2, which can generate free radicals and lead to the degradation of catalysts, ionomers, and membranes in PEMFCs. Furthermore, template-free 3D hydrocarbon frameworks as attractive precursors to advanced M-N-C catalysts will be discussed to significantly enhance intrinsic ORR activities in acidic media. In addition, long-term performance durability of M-N-C cathodes will be discussed extensively to provide potential solutions to enhance catalyst stability in PEMFCs. Finally, this review will provide an overall perspective on the progress, challenges, and solutions of PGM-free catalysts for future PEMFC technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprint with permission from Ref. [10], AAAS, Copyright 2011

Fig. 2

Reprint with permission from Ref. [88], Copyright 2019, Elsevier

Fig. 3

Reprint with permission from Ref. [89], Copyright 2019, Elsevier

Fig. 4

Reprint with permission from Ref. [4], Copyright 2017, American Chemical Society

Fig. 5

Reprint with permission from Ref. [51], Copyright 2018, John Wiley and Sons

Fig. 6

Reprint with permission from Ref. [95], Copyright 2019, Royal Society of Chemistry

Fig. 7

Reprint with permission from Ref. [96], Copyright 2018, Nature Publishing Group

Fig. 8

Reprint with permission from Ref. [95], Copyright 2019, Royal Society of Chemistry

Fig. 9

Reprint with permission from Ref. [51], Copyright 2018, Elsevier

Fig. 10

Reprint with permission from Ref. [88], Copyright 2019, Elsevier

Fig. 11

Reprint with permission from Refs. [102, 103], Copyright 2010 and 2013, Royal Society of Chemistry

Fig. 12

Reprint with permission from Ref. [96]. Copyright 2018, Nature Publishing Group

Fig. 13

Reprint with permission from Ref. [95], Copyright 2019, Royal Society of Chemistry

Similar content being viewed by others

References

  1. Hu, E., Feng, Y., Nai, J., et al.: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energ Environ. Sci. 11, 872–880 (2018)

    Article  CAS  Google Scholar 

  2. Dicks, A.L., Rand, D.A.: Fuel Cell Systems Explained. Wiley, New York (2018)

    Book  Google Scholar 

  3. Chai, G.L., Qiu, K., Qiao, M., et al.: Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energ Environ. Sci. 10, 1186–1195 (2017)

    Article  CAS  Google Scholar 

  4. Zhang, H., Hwang, S., Wang, M., et al.: Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139, 14143–14149 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. Das, V., Padmanaban, S., Venkitusamy, K., et al.: Recent advances and challenges of fuel cell based power system architectures and control—a review. Renew. Sustain. Energy Rev. 73, 10–18 (2017)

    Article  CAS  Google Scholar 

  6. Banham, D., Ye, S.: Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2, 629–638 (2017)

    Article  CAS  Google Scholar 

  7. Scofield, M.E., Liu, H., Wong, S.S.: A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes. Chem. Soc. Rev. 44, 5836–5860 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. Zheng, X., Wu, J., Cao, X., et al.: N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Appl. Catal. B Environ. 241, 442–451 (2018)

    Article  CAS  Google Scholar 

  9. Zhu, J., Xiao, M., Song, P., et al.: Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy 49, 23–30 (2018)

    Article  CAS  Google Scholar 

  10. Wu, G., More, K.L., Johnston, C.M., et al.: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Wu, G., Zelenay, P.: Nanostructured nonprecious metal catalysts for oxygen reduction reaction. Acc. Chem. Res. 46, 1878–1889 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Jaouen, F., Proietti, E., Lefèvre, M., et al.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energ Environ. Sci. 4, 114–130 (2011)

    Article  CAS  Google Scholar 

  13. Lefèvre, M., Proietti, E., Jaouen, F., et al.: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Wu, G.: Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Front. Energ 11, 286–298 (2017)

    Article  Google Scholar 

  15. Chen, Z., Higgins, D., Yu, A., et al.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energ Environ. Sci. 4, 3167–3192 (2011)

    Article  CAS  Google Scholar 

  16. Nie, Y., Li, L., Wei, Z.: Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. Han, B., Carlton, C.E., Kongkanand, A., et al.: Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energ Environ. Sci. 8, 258–266 (2015)

    Article  CAS  Google Scholar 

  18. Li, Q., Wu, L., Wu, G., et al.: New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 15, 2468–2473 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X.X., Hwang, S., Pan, Y.T., et al.: Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Sun, S., Zhang, G., Geng, D., et al.: A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew. Chem. Int. Ed. 123, 442–446 (2011)

    Article  Google Scholar 

  21. Sun, S., Zhang, G., Gauquelin, N., et al.: Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013)

    Article  CAS  PubMed Central  Google Scholar 

  22. Ying, J., Li, J., Jiang, G., et al.: Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction. Appl. Catal. B Environ. 225, 496–503 (2018)

    Article  CAS  Google Scholar 

  23. Li, Q., Cao, R., Cho, J., et al.: Nanocarbon electrocatalysts for oxygen-reduction in alkaline media for advanced energy conversion and storage. Adv. Energy Mater. 4, 1301415 (2014)

    Article  CAS  Google Scholar 

  24. Wang, C.H., Huang, H.C., Chang, S.T., et al.: Pyrolysis of melamine-treated vitamin B12 as a non-precious metal catalyst for oxygen reduction reaction. RSC Adv. 4, 4207–4211 (2014)

    Article  CAS  Google Scholar 

  25. Jiang, W.J., Gu, L., Li, L., et al.: Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138, 3570–3578 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Wu, G., Artyushkova, K., Ferrandon, M., et al.: Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans. 25, 1299–1311 (2009)

    Article  Google Scholar 

  27. Jasinski, R.: A new fuel cell cathode catalyst. Nature 201, 1212 (1964)

    Article  CAS  Google Scholar 

  28. Pylypenko, S., Mukherjee, S., Olson, T.S., et al.: Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochim. Acta 53, 7875–7883 (2008)

    Article  CAS  Google Scholar 

  29. Bezerra, C.W., Zhang, L., Lee, K., et al.: A review of Fe–N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim. Acta 53, 4937–4951 (2008)

    Article  CAS  Google Scholar 

  30. Kiros, Y.: Metal porphyrins for oxygen reduction in PEMFC. Int. J. Electrochem. Sci. 2, 285–300 (2007)

    CAS  Google Scholar 

  31. Wang, B.: Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152, 1–15 (2005)

    Article  CAS  Google Scholar 

  32. Gupta, S., Tryk, D., Bae, I., et al.: Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 19, 19–27 (1989)

    Article  CAS  Google Scholar 

  33. Bagotzky, V., Tarasevich, M., Radyushkina, K., et al.: Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J. Power Sources 2, 233–240 (1978)

    Article  Google Scholar 

  34. Zagal, J.H., Bedioui, F., Dodelet, J.P. (eds.): N4-Macrocyclic in Metal Complexes. Springer, New York (2006)

    Google Scholar 

  35. Peng, H., Liu, F., Liu, X., et al.: Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS Catal. 4, 3797–3805 (2014)

    Article  CAS  Google Scholar 

  36. Gupta, S., Qiao, L., Zhao, S., et al.: Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 6, 1601198 (2016)

    Article  CAS  Google Scholar 

  37. Li, Q., Wang, T., Havas, D., et al.: High-performance direct methanol fuel cells with precious-metal-free cathode. Adv. Sci. 3, 1600140 (2016)

    Article  CAS  Google Scholar 

  38. Wang, X., Zhang, H., Lin, H., et al.: Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-NC catalysts for oxygen reduction in acid. Nano Energy 25, 110–119 (2016)

    Article  CAS  Google Scholar 

  39. Wu, G., Santandreu, A., Kellogg, W., et al.: Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29, 83–110 (2016)

    Article  CAS  Google Scholar 

  40. Li, J., Chen, S., Li, W., et al.: A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 15504–15509 (2018)

    Article  CAS  Google Scholar 

  41. Gupta, S., Zhao, S., Ogoke, O., et al.: Engineering favorable morphology and structure of Fe-N-C oxygen-reduction catalysts through tuning of nitrogen/carbon precursors. Chemsuschem 10, 774–785 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. Wang, X., Li, Q., Pan, H., et al.: Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale 7, 20290–20298 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, H., Osgood, H., Xie, X., et al.: Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal–organic frameworks. Nano Energy 31, 331–350 (2017)

    Article  CAS  Google Scholar 

  44. Sha, H.D., Yuan, X., Li, L., et al.: Experimental identification of the active sites in pyrolyzed carbon-supported cobalt-polypyrrole-4-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction. J. Power Sources 255, 76–84 (2014)

    Article  CAS  Google Scholar 

  45. Li, M., Bo, X., Zhang, Y., et al.: Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction. J. Mater. Chem. A 2, 11672–11682 (2014)

    Article  CAS  Google Scholar 

  46. Li, J., Song, Y., Zhang, G., et al.: Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium. Adv. Funct. Mater. 27, 1604356 (2017)

    Article  CAS  Google Scholar 

  47. Wei, Q., Zhang, G., Yang, X., et al.: Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn-air batteries. J. Mater. Chem. A 6, 4605–4610 (2018)

    Article  CAS  Google Scholar 

  48. Wu, G., Johnston, C.M., Mack, N.H., et al.: Synthesis–structure–performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygen reduction in fuel cells. J. Mater. Chem. 21, 11392–11405 (2011)

    Article  CAS  Google Scholar 

  49. Wu, G., Nelson, M., Ma, S., et al.: Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 49, 3972–3982 (2011)

    Article  CAS  Google Scholar 

  50. Wu, R., Song, Y., Huang, X., et al.: High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells. J. Power Sources 401, 287–295 (2018)

    Article  CAS  Google Scholar 

  51. Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018)

    Article  CAS  Google Scholar 

  52. Choi, J.Y., Yang, L., Kishimoto, T., et al.: Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding? Energ Environ. Sci. 10, 296–305 (2017)

    Article  CAS  Google Scholar 

  53. Choi, C.H., Lim, H.K., Chung, M.W., et al.: The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energ Environ. Sci. 11, 3176–3182 (2018)

    Article  CAS  Google Scholar 

  54. Wu, M., Wei, Q., Zhang, G., et al.: Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc–air batteries. Adv. Energy Mater. 8, 1801836 (2018)

    Article  CAS  Google Scholar 

  55. Xu, P., Zhang, J., Jiang, G., et al.: Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy 51, 745–753 (2018)

    Article  CAS  Google Scholar 

  56. Banham, D., Ye, S., Pei, K., et al.: A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 285, 334–348 (2015)

    Article  CAS  Google Scholar 

  57. Choi, C.H., Baldizzone, C., Polymeros, G., et al.: Minimizing operando demetallation of Fe-NC electrocatalysts in acidic medium. ACS Catal. 6, 3136–3146 (2016)

    Article  CAS  Google Scholar 

  58. Varnell, J.A., Edmund, C., Schulz, C.E., et al.: Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 7, 12582 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi, C.H., Baldizzone, C., Grote, J.P., et al.: Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy. Angew. Chem. Int. Ed. 54, 12753–12757 (2015)

    Article  CAS  Google Scholar 

  60. Goellner, V., Armel, V., Zitolo, A., et al.: Degradation by hydrogen peroxide of metal-nitrogen-carbon catalysts for oxygen reduction. J. Electrochem. Soc. 162, H403–H414 (2015)

    Article  CAS  Google Scholar 

  61. Herranz, J., Jaouen, F., Lefèvre, M., et al.: Unveiling N-protonation and anion-binding effects on Fe/N/C catalysts for O2 reduction in proton-exchange-membrane fuel cells. J. Phys. Chem. C 115, 16087–16097 (2011)

    Article  CAS  Google Scholar 

  62. Sun, T., Wu, Q., Che, R., et al.: Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium. ACS Catal. 5, 1857–1862 (2015)

    Article  CAS  Google Scholar 

  63. Van Veen, J., Colijn, H., Van Baar, J.: On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim. Acta 33, 801–804 (1988)

    Article  Google Scholar 

  64. Charreteur, F., Ruggeri, S., Jaouen, F., et al.: Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content. Electrochim. Acta 53, 6881–6889 (2008)

    Article  CAS  Google Scholar 

  65. Charreteur, F., Jaouen, F., Ruggeri, S., et al.: Fe/N/C non-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 53, 2925–2938 (2008)

    Article  CAS  Google Scholar 

  66. Si, Y., Xiong, Z., Liu, X., et al.: A highly active nitrogen-containing non-precious metal catalyst cohmta/C for oxygen reduction reaction. Int. J. Electrochem. Sci. 10, 5212–5221 (2015)

    CAS  Google Scholar 

  67. Zhang, H.J., Li, H., Li, X., et al.: Influence of pyrolyzing atmosphere on the catalytic activity and structure of Co-based catalysts for oxygen reduction reaction. Electrochim. Acta 115, 1–9 (2014)

    Article  CAS  Google Scholar 

  68. Campos, M., Siriwatcharapiboon, W., Potter, R.J., et al.: Selectivity of cobalt-based catalysts towards hydrogen peroxide formation during the reduction of oxygen. Catal. Today 202, 135–143 (2013)

    Article  CAS  Google Scholar 

  69. Chisaka, M., Ando, Y., Muramoto, H.: Facile combustion synthesis of carbon-supported titanium oxynitride to catalyse oxygen reduction reaction in acidic media. Electrochim. Acta 183, 100–106 (2015)

    Article  CAS  Google Scholar 

  70. Yang, Y., Liu, J., Han, Y., et al.: Porous cobalt, nitrogen-codoped carbon nanostructures from carbon quantum dots and VB12 and their catalytic properties for oxygen reduction. Phys. Chem. Chem. Phys. 16, 25350–25357 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Chang, S.T., Huang, H.C., Wang, H.C., et al.: Effects of structures of pyrolyzed corrin, corrole and porphyrin on oxygen reduction reaction. Int. J. Hydrog. Energy 39, 934–941 (2014)

    Article  CAS  Google Scholar 

  72. Chisaka, M., Ishihara, A., Ota, K., et al.: Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 113, 735–740 (2013)

    Article  CAS  Google Scholar 

  73. Yuan, X., Hu, X.X., Ding, X.L., et al.: Effects of cobalt precursor on pyrolyzed carbon-supported cobalt-polypyrrole as electrocatalyst toward oxygen reduction reaction. Nanoscale Res. Lett. 8, 478 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chung, H.T., Wu, G., Li, Q., et al.: Role of two carbon phases in oxygen reduction reaction on the Co-PPy-C catalyst. Int. J. Hydrog. Energy 39, 15887–15893 (2014)

    Article  CAS  Google Scholar 

  75. Zhang, H.J., Li, H., Li, X., et al.: Pyrolyzing cobalt diethylenetriamine chelate on carbon (CoDETA/C) as a family of non-precious metal oxygen reduction catalyst. Int. J. Hydrog. Energy 39, 267–276 (2014)

    Article  CAS  Google Scholar 

  76. Sahraie, N.R., Kramm, U.I., Steinberg, J., et al.: Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 6, 8618 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jiang, H., Liu, Y., Hao, J., et al.: Self-assembly synthesis of cobalt-and nitrogen-coembedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media. ACS Sustain. Chem. Eng. 5, 5341–5350 (2017)

    Article  CAS  Google Scholar 

  78. Li, Q., Wu, G., Cullen, D.A., et al.: Phosphate-tolerant oxygen reduction catalysts. ACS Catal. 4, 3193–3200 (2014)

    Article  CAS  Google Scholar 

  79. Roncaroli, F., Dal Molin, E.S., Viva, F.A., et al.: Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts. Electrochim. Acta 174, 66–77 (2015)

    Article  CAS  Google Scholar 

  80. Liang, H.W., Wei, W., Wu, Z.S., et al.: Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 135, 16002–16005 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Wu, M., Zhang, E., Guo, Q., et al.: N/S-Me (Fe Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability. Appl. Energy 175, 468–478 (2016)

    Article  CAS  Google Scholar 

  82. Cheon, J.Y., Kim, T., Choi, Y., et al.: Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Sci. Rep. 3, 2715 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kong, A., Kong, Y., Zhu, X., et al.: Ordered mesoporous Fe (or Co)-N-graphitic carbons as excellent non-precious-metal electrocatalysts for oxygen reduction. Carbon 78, 49–59 (2014)

    Article  CAS  Google Scholar 

  84. Gupta, S., Zhao, S., Wang, X.X., et al.: Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon. ACS Catal. 7, 8386–8393 (2017)

    Article  CAS  Google Scholar 

  85. Pan, F., Zhang, H., Liu, K., et al.: Unveiling active sites of CO2 reduction on nitrogen coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal. 8, 3116–3122 (2018)

    Article  CAS  Google Scholar 

  86. Shah, S.S.A., Najam, T., Cheng, C., et al.: Exploring Fe–Nx for peroxide reduction: template-free synthesis of Fe–Nx traumatized mesoporous carbon nanotubes as an ORR catalyst in acidic and alkaline solutions. Chem-Eur. J. 24, 10630–10635 (2018)

    Article  CAS  PubMed  Google Scholar 

  87. Qiao, Z., Zhang, H., Karakalos, S., et al.: 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Appl. Catal. B Environ. 219, 629–639 (2017)

    Article  CAS  Google Scholar 

  88. Liu, K., Qiao, Z., Hwang, S., et al.: Mn-and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl. Catal. B Environ. 243, 195–203 (2018)

    Article  CAS  Google Scholar 

  89. Liu, S., Deng, C., Yao, L., et al.: The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. J. Power Sources 269, 225–235 (2014)

    Article  CAS  Google Scholar 

  90. Park, K.S., Jin, S., Lee, K.H., et al.: Characterization of zeolitic imidazolate framework-derived polyhedral carbonaceous material and its application to electrocatalyst for oxygen reduction reaction. Int. J. Electrochem. Sci. 11, 9295–9306 (2016)

    Article  CAS  Google Scholar 

  91. Wang, X., Zhou, J., Fu, H., et al.: MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064–14070 (2014)

    Article  CAS  Google Scholar 

  92. You, B., Jiang, N., Sheng, M., et al.: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 5, 7068–7076 (2015)

    Article  CAS  Google Scholar 

  93. Chong, L., Goenaga, G.A., Williams, K., et al.: Investigation of oxygen reduction activity of catalysts derived from Co and Co/Zn methyl-imidazolate frameworks in proton exchange membrane fuel cells. ChemElectroChem 3, 1541–1545 (2016)

    Article  CAS  Google Scholar 

  94. Han, Y., Wang, Y.G., Chen, W., et al.: Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. He, Y., Hwang, S., Cullen, D.A., et al.: Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energ Environ. Sci. 12, 250–260 (2019)

    Article  CAS  Google Scholar 

  96. Li, J., Chen, M., Cullen, D.A., et al.: Atomically dispersed manganese catalysts for oxygen reduction in proton exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018)

    Article  CAS  Google Scholar 

  97. Zhang, H., Chung, H., Cullen, D.A., et al.: Metal-organic framework-derived atomic iron-dispersed carbon electrocatalysts for oxygen reduction in acidic polymer electrolyte fuel cells. ECS Meet. Abstr. MA2017-01, 1761 (2017)

    Google Scholar 

  98. Liu, K., Kattel, S., Mao, V., et al.: Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium. J. Phys. Chem. C 120, 1586–1596 (2016)

    Article  CAS  Google Scholar 

  99. Zeng, M., Liu, Y., Zhao, F., et al.: Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 26, 4397–4404 (2016)

    Article  CAS  Google Scholar 

  100. Kattel, S., Wang, G.: A density functional theory study of oxygen reduction reaction on Me-N4 (Me = Fe Co, or Ni) clusters between graphitic pores. J. Mater. Chem. A 1, 10790–10797 (2013)

    Article  CAS  Google Scholar 

  101. Liu, K., Qiao, Z., Hwang, S., et al.: Mn-and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl. Catal. B Environ. 243, 195–203 (2019)

    Article  CAS  Google Scholar 

  102. Wu, G., Nelson, M.A., Mack, N.H., et al.: Titanium dioxide-supported non-precious metal oxygen reduction electrocatalyst. Chem. Commun. 46, 7489–7491 (2010)

    Article  CAS  Google Scholar 

  103. Wu, G., More, K.L., Xu, P., et al.: A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chem. Commun. 49, 3291–3293 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the U. S. DOE EERE Fuel Cell Technology Office (DE-EE0008075, DE-EE0008076) and the National Science Foundation (CBET-1604392, 1804326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tan, Q., Lu, L. et al. Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. Electrochem. Energ. Rev. 2, 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00031-9

Keywords

Navigation