Skip to main content
Log in

Aqueous electrocatalytic N2 reduction under ambient conditions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, the electrochemical N2 reduction reaction (NRR) in aqueous electrolytes at ambient temperature and pressure has demonstrated its unique advantages and potentials. The reactants are directly derived from gaseous N2 and water, which are naturally abundant, and NH3 production is important for fertilizers and other industrial applications. To improve the conversion yield and selectivity (mainly competing with water reduction), electrocatalysts must be rationally designed to optimize the mass transport, chemisorption, and transduction pathways of protons and electrons. In this review, we summarize recent progress in the electrochemical NRR. Studies of electrocatalyst designs are summarized for different categories, including metal-based catalysts, metal oxide-derived catalysts, and hybrid catalysts. Strategies for enhancing the NRR performance based on the facet orientation, metal oxide interface, crystallinity, and nitrogen vacancies are presented. Additional system designs, such as lithium-nitrogen batteries, and the solvent effect are introduced. Finally, existing challenges and prospects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-The selectivity challenge. ACS Catal. 2017, 7, 706–709.

    Article  Google Scholar 

  2. Cui, B. C.; Zhang, J. H.; Liu, S. Z.; Liu, X. J.; Xiang, W.; Liu, L. F.; Xin, H. Y.; Lefler, M. J.; Licht, S. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem. 2017, 19, 298–304.

    Article  Google Scholar 

  3. Schlögl, R. Catalytic synthesis of ammonia-A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Article  Google Scholar 

  4. Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

    Article  Google Scholar 

  5. Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–449.

    Article  Google Scholar 

  6. Service, R. F. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.

    Article  Google Scholar 

  7. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  Google Scholar 

  8. Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

    Article  Google Scholar 

  9. van Kessel, M. A. H. J.; Speth, D. R.; Albertsen, M.; Nielsen, P. H.; Op den Camp, H. J. M.; Kartal, B.; Jetten, M. S. M.; Lücker, S. Complete nitrification by a single microorganism. Nature 2015, 528, 555–559.

    Article  Google Scholar 

  10. Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

    Article  Google Scholar 

  11. Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43–81.

    Google Scholar 

  12. Galloway, J. N.; Cowling, E. B. Reactive nitrogen and the world: 200 years of change. Ambio 2002, 31, 64–71.

    Article  Google Scholar 

  13. Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. Eur. J. 2016, 22, 18722–18728.

    Article  Google Scholar 

  14. Burgess, B.; Wherland, S.; Newton, W.; Stiefel, E. I. Nitrogenase reactivity: Insight into the nitrogen-fixing process through hydrogen-inhibition and HD-forming reactions. Biochemistry 1981, 20, 5140–5146.

    Article  Google Scholar 

  15. Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

    Article  Google Scholar 

  16. Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B: Environ. 2017, 200, 323–329.

    Article  Google Scholar 

  17. Li, X. M.; Wang, W. Z.; Jiang, D.; Sun, S. M.; Zhang, L.; Sun, X. Efficient solar-driven nitrogen fixation over carbon-tungstic- acid hybrids. Chemistry 2016, 22, 13819–13822.

    Article  Google Scholar 

  18. Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.

    Article  Google Scholar 

  19. Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {111} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

    Article  Google Scholar 

  20. Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.

    Article  Google Scholar 

  21. Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

    Google Scholar 

  22. Pappenfus, T. M.; Lee, K.; Thoma, L. M.; Dukart, C. R. Wind to ammonia: Electrochemical processes in room temperature Ionic liquids. ECS Trans. 2009, 16, 89–93.

    Article  Google Scholar 

  23. Lu, Y. F.; Li, J.; Tada, T.; Toda, Y.; Ueda, S.; Yokoyama, T.; Kitano, M.; Hosono, H. Water durable electride Y5Si3: Electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 2016, 138, 3970–3973.

    Article  Google Scholar 

  24. Kugler, K.; Ohs, B.; Scholz, M.; Wessling, M. Towards a carbon independent and CO2-free electrochemical membrane process for NH3 synthesis. Phys. Chem. Chem. Phys. 2014, 16, 6129–6138.

    Article  Google Scholar 

  25. Guo, X. H.; Zhu, Y. P.; Ma, T. Y. Lowering reaction temperature: Electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J. Energy Chem. 2017, 26, 1107–1116.

    Article  Google Scholar 

  26. Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

    Article  Google Scholar 

  27. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

    Article  Google Scholar 

  28. Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.

    Article  Google Scholar 

  29. Kuang, M.; Zheng, G. F. Nanostructured bifunctional redox electrocatalysts. Small 2016, 12, 5656–5675.

    Article  Google Scholar 

  30. Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

    Article  Google Scholar 

  31. Abghoui, Y.; Skúlason, E. Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides. Catal. Today 2017, 286, 78–84.

    Article  Google Scholar 

  32. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Article  Google Scholar 

  33. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas–liquid–solid three-phase reactor. ACS Sustain. Chem. Eng. 2017, 5, 7393–7400.

    Article  Google Scholar 

  34. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    Article  Google Scholar 

  35. Skulason, E.; Bligaard, T.; Gudmundsdottir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

    Article  Google Scholar 

  36. Nguyen, M. T.; Seriani, N.; Gebauer, R. Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317–14322.

    Article  Google Scholar 

  37. Kumar, C. V. S.; Subramanian, V. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation? -A DFT investigation. Phys. Chem. Chem. Phys. 2017, 19, 15377–15387.

    Article  Google Scholar 

  38. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Article  Google Scholar 

  39. Howalt, J. G.; Vegge, T. Electrochemical ammonia production on molybdenum nitride nanoclusters. Phys. Chem. Chem. Phys. 2013, 15, 20957–20965.

    Article  Google Scholar 

  40. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    Article  Google Scholar 

  41. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Article  Google Scholar 

  42. Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 24, 5956–5961.

    Article  Google Scholar 

  43. Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.

    Article  Google Scholar 

  44. Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

    Article  Google Scholar 

  45. Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

    Article  Google Scholar 

  46. Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.

    Article  Google Scholar 

  47. Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

    Article  Google Scholar 

  48. Ishikawa, A.; Doi, T.; Nakai, H. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. J. Catal. 2018, 357, 213–222.

    Article  Google Scholar 

  49. Pickett, C.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.

    Article  Google Scholar 

  50. Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine. J. Electroanal. Chem. Interf. Electrochem. 1989, 263, 171–174.

    Article  Google Scholar 

  51. Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanines. J. Electroanal. Chem. Interf. Electrochem. 1989, 272, 263–266.

    Article  Google Scholar 

  52. Shipman, M. A.; Symes, M. D. A re-evaluation of Sn(II) phthalocyanine as a catalyst for the electrosynthesis of ammonia. Electrochim. Acta 2017, 258, 618–622.

    Article  Google Scholar 

  53. Jeong, E. Y.; Yoo, C. Y.; Jung, C. H.; Park, J. H.; Park, Y. C.; Kim, J. N.; Oh, S. G.; Woo, Y.; Yoon, H. C. Electrochemical ammonia synthesis mediated by titanocene dichloride in aqueous electrolytes under ambient conditions. ACS Sustainable Chem. Eng. 2017, 5, 9662–9666.

    Article  Google Scholar 

  54. Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; van Harrevelt, R.; Honkala, K.; Jonsson, H. et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735.

    Article  Google Scholar 

  55. Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru (0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

    Article  Google Scholar 

  56. Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru (0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390.

    Article  Google Scholar 

  57. Strongin, D. R.; Carrazza, J.; Bare, S. R.; Somoriai, G. A. The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J. Catal. 1987, 103, 213–215.

    Article  Google Scholar 

  58. Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.

    Article  Google Scholar 

  59. Renner, J. N.; Greenlee, L. F.; Ayres, K. E.; Herring, A. M. Electrochemical synthesis of ammonia: A low pressure, low temperature approach. Electrochem. Soc. Interface 2015, 24, 51–57.

    Article  Google Scholar 

  60. Kong, J.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain. Chem. Eng. 2017, 5, 10986–10995.

    Article  Google Scholar 

  61. Höskuldsson, Á. B.; Abghoui, Y.; Gunnarsdóttir, A. B.; Skúlason, E. Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327–10333.

    Article  Google Scholar 

  62. Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst. J. Electroanal. Chem. Interfac. Electrochem. 1990, 291, 269–272.

    Article  Google Scholar 

  63. Lan, R.; Alkhazmi, K. A.; Amar, I. A.; Tao, S. W. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst. Electrochim. Acta 2014, 123, 582–587.

    Article  Google Scholar 

  64. Bruix, A.; Rodriguez, J. A.; Ramirez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 2012, 134, 8968–8974.

    Article  Google Scholar 

  65. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  66. Wang, R.; Xue, X. Y.; Lu, W. C.; Liu, H. W.; Lai, C.; Xi, K.; Che, Y. K.; Liu, J. Q.; Guo, S. J.; Yang, D. J. Tuning and understanding the phase interface of TiO2 nanoparticles for more efficient lithium ion storage. Nanoscale 2015, 7, 12833–12838.

    Article  Google Scholar 

  67. Guo, S. J.; Zhang, X.; Zhu, W. L.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. H. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. J. Am. Chem. Soc. 2014, 136, 15026–15033.

    Article  Google Scholar 

  68. Farmer, J. A.; Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010, 329, 933–936.

    Article  Google Scholar 

  69. Wang, Y. H.; Cui, X. Q.; Zhang, Y. Y.; Zhang, L. J.; Gong, X. G.; Zheng, G. F. Achieving high aqueous energy storage via hydrogen-generation passivation. Adv. Mater. 2016, 28, 7626–7632.

    Article  Google Scholar 

  70. Abghoui, Y.; Garden, A. L.; Hlynsson, V. F.; Björgvinsdóttir, S.; Ólafsdóttir, H.; Skúlason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918.

    Article  Google Scholar 

  71. Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549.

    Article  Google Scholar 

  72. Zhao, X. R.; Yin, F. X.; Liu, N.; Li, G. R.; Fan, T. X.; Chen, B. H. Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 2017, 52, 10175–10185.

    Article  Google Scholar 

  73. Abghoui, Y.; Garden, A. L.; Howat, J. G.; Vegge, T.; Skúlason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635–646.

    Article  Google Scholar 

  74. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  Google Scholar 

  75. Köleli, F.; Kayan, D. B. Low overpotential reduction of dinitrogen to ammonia in aqueous media. J. Electroanal. Chem. 2010, 638, 119–122.

    Article  Google Scholar 

  76. Kim, K.; Lee, N.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F610–F612.

    Article  Google Scholar 

  77. Kim, K.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F1523–F1526.

    Article  Google Scholar 

  78. Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium- nitrogen battery for energy storage. Chem 2017, 2, 525–532.

    Article  Google Scholar 

  79. Lan, R.; Irvine, J. T. S.; Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 2013, 3, 1145.

    Article  Google Scholar 

  80. Köleli, F.; Röpke, T. Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl. Catal. B 2006, 62, 306–310.

    Article  Google Scholar 

  81. Lan, R.; Tao, S. W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv. 2013, 3, 18016–18021.

    Article  Google Scholar 

  82. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 2005, 38, 955–962.

    Article  Google Scholar 

  83. Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87.

    Article  Google Scholar 

  84. Arashiba, K.; Miyake, Y.; Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 2010, 3, 120–125.

    Article  Google Scholar 

  85. Jackson, M. N.; Surendranath, Y. Donor-dependent kinetics of interfacial proton-coupled electron transfer. J. Am. Chem. Soc. 2016, 138, 3228–3234.

    Article  Google Scholar 

  86. Christensen, C. H.; Johannessen, T.; Sørensen, R. Z.; Nørskov, J. K. Towards an ammonia-mediated hydrogen economy? Catal. Today 2006, 111, 140–144.

    Article  Google Scholar 

  87. Lan, R.; Tao, S. W. Ammonia as a suitable fuel for fuel cells. Front. Energy Res. 2014, 2, 35.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for supporting this work: the National Key Research and Development Program of China (Nos. 2017YFA0206901 and 2017YFA0206900), the National Natural Science Foundation of China (Nos. 21473038 and 21773036), the Science and Technology Commission of Shanghai Municipality (No. 17JC1402000), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChem).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengfeng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, N., Zheng, G. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 11, 2992–3008 (2018). https://doi.org/10.1007/s12274-018-1987-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1987-y

Keywords

Navigation