Skip to main content
Log in

Single atom accelerates ammonia photosynthesis

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Atomically dispersed metal has gained much attention because of the new opportunities they offer in catalysis. However, it is still crucial to understand the mechanism of single-atom catalysis at molecular level for expanding them to other more difficult catalytic reactions, such as ammonia synthesis from nitrogen. In fact, developing ammonia synthesis under ambient conditions to overcome the high energy consumption in well-established Haber-Bosch process has fascinated scientists for many years. Herein, we demonstrate that single Cu atom yields facile valence-electron isolation from the conjugated π electron cloud of p-CN. Electron spin resonance measurements reveal that these isolated valence electrons can be easily excited to generate free electrons under photo-illumination, thus inducing high efficient photo-induced ammonia synthesis under ambient conditions. The NH3 producing rate of copper modified carbon nitride (Cu-CN) reached 186 μmol g−1 h−1 under visible light irradiation with the quantum efficiency achieved 1.01% at 420 nm monochromatic light. This finding surely offers a model to open up a new vista for the ammonia synthesis at gentle conditions. The introduction of single atom to isolate the valence electron also represents a new paradigm for many other photocatalytic reactions, since the most photoinduced processes have been successfully exploited sharing the same origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chase MW. NIST-JANAF Thermochemical Tables. 4th ed. New York: American Chemical Society and American Institute of Physics, 1998

    Google Scholar 

  2. Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Chem Rev, 2014, 114: 4041–4062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rafiqul I, Weber C, Lehmann B, Voss A. Energy, 2005, 30: 2487–2504

    Article  CAS  Google Scholar 

  4. Oshikiri T, Ueno K, Misawa H. Angew Chem, 2016, 128: 4010–4014

    Article  Google Scholar 

  5. Rebreyend C, de Bruin B. Angew Chem Int Ed, 2015, 54: 42–44

    Article  CAS  Google Scholar 

  6. Oshikiri T, Ueno K, Misawa H. Angew Chem Int Ed, 2014, 53: 9802–9805

    Article  CAS  Google Scholar 

  7. Anderson JS, Rittle J, Peters JC. Nature, 2013, 501: 84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fryzuk MD. Science, 2013, 340: 1530–1531

    Article  CAS  PubMed  Google Scholar 

  9. Macleod KC, Holland PL. Nat Chem, 2013, 5: 559–565

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Li H, Zhan G, Zhang L. Acc Chem Res, 2017, 50: 112–121

    Article  CAS  PubMed  Google Scholar 

  11. Schrauzer GN, Guth TD. J Am Chem Soc, 1977, 99: 7189–7193

    Article  CAS  Google Scholar 

  12. Liu J, Kelley MS, Wu W, Banerjee A, Douvalis AP, Wu J, Zhang Y, Schatz GC, Kanatzidis MG. Proc Natl Acad Sci USA, 2016, 113: 5530–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu D, Zhang L, Ruther RE, Hamers RJ. Nat Mater, 2013, 12: 836–841

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Xu K, Tao S, Shao Z, Peng X, Bi W, Chen P, Ding H, Chu W, Wu C, Xie Y. Chem Sci, 2016, 7: 1462–1467

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Adv Mater, 2016, 28: 2427–2431

    Article  CAS  PubMed  Google Scholar 

  16. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Chem Rev, 2016, 116: 7159–7329

    Article  CAS  PubMed  Google Scholar 

  17. Yang P, Zhao J, Qiao W, Li L, Zhu Z. Nanoscale, 2015, 7: 18887–18890

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Wang X, Antonietti M. Angew Chem Int Ed, 2012, 51: 68–89

    Article  CAS  Google Scholar 

  19. Muetterties EL. Science, 1977, 196: 839–848

    Article  CAS  PubMed  Google Scholar 

  20. Moskovits M. Acc Chem Res, 1979, 12: 229–236

    Article  CAS  Google Scholar 

  21. Marks TJ. Acc Chem Res, 1992, 25: 57–65

    Article  CAS  Google Scholar 

  22. Quadrelli EA, Basset JM. Coordin Chem Rev, 2010, 254: 707–728

    Article  CAS  Google Scholar 

  23. Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset JM. Angew Chem Int Ed, 2003, 42: 156–181

    Article  Google Scholar 

  24. Zhang Y, Thomas A, Antonietti M, Wang X. J Am Chem Soc, 2009, 131: 50–51

    Article  CAS  PubMed  Google Scholar 

  25. Xu K, Li X, Chen P, Zhou D, Wu C, Guo Y, Zhang L, Zhao J, Wu X, Xie Y. Chem Sci, 2015, 6: 283–287

    Article  CAS  PubMed  Google Scholar 

  26. Tyborski T, Merschjann C, Orthmann S, Yang F, Lux-Steiner MC, Schedel-Niedrig T. J Phys-Condens Matter, 2012, 24: 162201

    Article  CAS  PubMed  Google Scholar 

  27. Merschjann C, Tyborski T, Orthmann S, Yang F, Schwarzburg K, Lublow M, Lux-Steiner MC, Schedel-Niedrig T. Phys Rev B, 2013, 87: 205204

    Article  CAS  Google Scholar 

  28. Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, Sun X, Xie J, Zhao Z, Zhang Q, Tian Y, Xie Y. Adv Mater, 2016, 28: 6940–6945

    Article  CAS  PubMed  Google Scholar 

  29. Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Angew Chem Int Ed, 2015, 54: 11068–11072

    Article  CAS  Google Scholar 

  30. Zhang G, Wang X. J Catal, 2013, 307: 246–253

    Article  CAS  Google Scholar 

  31. Cao SW, Liu XF, Yuan YP, Zhang ZY, Fang J, Loo SCJ, Barber J, Sum TC, Xue C. Phys Chem Chem Phys, 2013, 15: 18363–18366

    Article  CAS  PubMed  Google Scholar 

  32. Caputo CA, Gross MA, Lau VW, Cavazza C, Lotsch BV, Reisner E. Angew Chem Int Ed, 2014, 53: 11538–11542

    Article  CAS  Google Scholar 

  33. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016, 352: 797–800

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y, Ramasse QM, Brorson M, Moses PG, Hansen LP, Kisielowski CF, Helveg S. Angew Chem Int Ed, 2014, 53: 10723–10727

    Article  CAS  Google Scholar 

  35. Kistler JD, Chotigkrai N, Xu P, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC. Angew Chem Int Ed, 2014, 53: 8904–8907

    Article  CAS  Google Scholar 

  36. Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X. Angew Chem Int Ed, 2014, 53: 3418–3421

    Article  CAS  Google Scholar 

  37. Li H, Shang J, Ai Z, Zhang L. J Am Chem Soc, 2015, 137: 6393–6399

    Article  CAS  PubMed  Google Scholar 

  38. Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561

    Article  CAS  Google Scholar 

  39. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  40. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  41. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  43. Monkhorst HJ, Pack JD. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  44. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  PubMed  Google Scholar 

  45. Bucko T, Hafner J, Lebegue S, Angyan JG. J Phys Chem A, 2010, 114: 11814–11824

    Article  CAS  PubMed  Google Scholar 

  46. Ravel B, Newville M. J Synchrotron Rad, 2005, 12: 537–541

    Article  CAS  Google Scholar 

  47. Zuo HW, Lu CH, Ren YR, Li Y, Zhang YF, Chen WK. Acta Phys-Chim Sin, 2016, 32: 1183–1190

    CAS  Google Scholar 

  48. Dong G, Ho W, Wang C. J Mater Chem A, 2015, 3: 23435–23441

    Article  CAS  Google Scholar 

  49. Wu W, Zhan L, Fan W, Song J, Li X, Li Z, Wang R, Zhang J, Zheng J, Wu M, Zeng H. Angew Chem Int Ed, 2015, 54: 6540–6544

    Article  CAS  Google Scholar 

  50. Easley WC, Weltner W Jr. J Chem Phys, 1970, 52: 197–205

    Article  CAS  Google Scholar 

  51. Lau VWH, Moudrakovski I, Botari T, Weinberger S, Mesch MB, Duppel V, Senker J, Blum V, Lotsch BV. Nat Commun, 2016, 7: 12165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0207301), the National Natural Science Foundation of China (21622107, 11621063, U1532265), the Key Research Program of Frontier Sciences (QYZDY-SSW-SLH011), the Youth Innovation Promotion Association CAS (2016392), the Fundamental Research Funds of Central University (WK2340000075), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXZY003). We thank Prof. J.H. Su from the University of Science and Technology of China for his helpful discussion of the ESR results. The computational center of USTC is acknowledged for computational support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Xiao or Yi Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Liu, W., He, Z. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 61, 1187–1196 (2018). https://doi.org/10.1007/s11426-018-9273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9273-1

Keywords

Navigation