Skip to main content
Log in

Synthesis of Rod-like NiO–Co3O4 Composites for Sensitive Electrochemical Detection of Hydrogen Peroxide

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Accurate and effective detection of hydrogen peroxide (H2O2) is of great significance in physiological functions as well as industrial applications. In this paper, the rod-like NiO–Co3O4 nanomaterials were synthesized by a simple hydrothermal method for electrochemical detection of H2O2. The characterization results indicated that the nanomaterials possess high porosity and excellent conductivity, and displayed good electrocatalysis activity at the same time. Under alkaline conditions, the as-prepared nanomaterials can catalyze the reduction of H2O2 and realize the electron transfer between H2O2 and the electrode. The H2O2 electrochemical sensor based on NiO–Co3O4 nanomaterials exhibited a wide linear response (1–250 and 250–1200 μmol/L), a low detection limit (0.1 μmol/L) and a high sensitivity (5305.59 μA/ (mmol/L·cm2) (S/N = 3)). In addition, the fabricated sensor showed high selectivity, good repeatability and high stability. The applications of the proposed sensor for H2O2 detection in food samples were demonstrated and satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marzo ND, Chisci E, Giovannoni R. The role of hydrogen peroxide in redox-dependent signaling: Homeostatic and pathological responses in mammalian cells. Cells. 2018;7(10):156.

    Article  PubMed Central  Google Scholar 

  2. Habánová H, Berka M. Hydrogen peroxide in plant’s life. Chem Listy. 2018;112(7):421–6.

    Google Scholar 

  3. Sies H, Jones DP. Reactive oxygen species (Ros) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83.

    Article  CAS  PubMed  Google Scholar 

  4. Burek BO, Bormann S, Hollmann F, Bloh JZ, Holtmann D. Hydrogen peroxide driven biocatalysis. Green Chem. 2019;21(12):3232–49.

    Article  CAS  Google Scholar 

  5. Lismont C, Revenco I, Fransen M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci. 2019;20(15):3673.

    Article  CAS  PubMed Central  Google Scholar 

  6. Sáez-Vera C, Núñez-Acuña G, Valenzuela-Muñoz V, Gallardo-Escárate C. Hydrogen peroxide treatment modulates the immune and detoxification responses in the sea louse caligus rogercresseyi. Fish Shellfish Immun. 2019;91:398.

    Article  Google Scholar 

  7. Matsushima H, Kumagai Y, Vandenbon A, Kataoka H, Kadena M, Fukamachi H, Arimoto T, Morisaki H, Fujiwara N, Okahashi N. Microarray analysis of macrophage response to infection with streptococcus oralis reveals the immunosuppressive effect of hydrogen peroxide. Biochem Biophys Res Commun. 2017;485(2):461–7.

    Article  CAS  PubMed  Google Scholar 

  8. Pravda J. Hydrogen peroxide and disease: Towards a unified system of pathogenesis and therapeutics. Mol Med. 2020;26(1):41.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ye H, Zhou Y, Liu X, Chen YB, Yin LC. Recent advances on reactive oxygen species (Ros)-responsive delivery and diagnosis system. Biomacromol. 2019;20(7):2441–63.

    Article  CAS  Google Scholar 

  10. Li K, Tang BS, Zhang WW, Shi ZJ, Zhang H. Formation mechanism of bleaching damage for a biopolymer: differences between sodium hypochlorite and hydrogen peroxide bleaching methods for shellac. ACS Omega. 2020;5(35):22551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ukuku DO. Effect of hydrogen peroxide treatment on microbial quality and appearance of whole and fresh-cut melons contaminated with salmonella spp. Int J Food Microbiol. 2004;95(2):137–46.

    Article  CAS  PubMed  Google Scholar 

  12. Vahidpour F, Oberländer J, Schöning MJ. Flexible calorimetric gas sensors for detection of a broad concentration range of gaseous hydrogen peroxide: a step forward to online monitoring of food-package sterilization processes. Phys Stat Solid. 2018;215(15):1800044.

    Google Scholar 

  13. Yan Q, Cao LL, Dong H, Tan ZL, Hu YT, Liu Q, Liu H, Zhao PP, Chen L, Liu YY. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron. 2019;127:174–80.

    Article  CAS  PubMed  Google Scholar 

  14. He ZJ, Kang TF, Lu LP, Cheng SY. An electrochemiluminescence aptamer sensor for chloramphenicol based on go-qds nanocomposites and enzyme-linked aptamers. J Electroanal Chem. 2020;860:113870.

    Article  CAS  Google Scholar 

  15. Eguílaz M, Dalmasso PR, Rubianes MD, Gutierrez F, Rodríguez M, Gallay P, Mujica MEJL, Ramírez ML, Tettamanti CS, Montemerlo AE. Recent advances in the development of electrochemical hydrogen peroxide carbon nanotubes-based (bio)sensors. Curr Opin Electrochem. 2019;14:157–65.

    Article  Google Scholar 

  16. Fukuzumi S, Lee YM, Nam W. Recent progress in production and usage of hydrogen peroxide. Chinese J Catal. 2021;42(8):1241–52.

    Article  CAS  Google Scholar 

  17. Pundir CS, Deswal R, Narwal V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioproc Biosyst Eng. 2017;41(3):313–29.

    Article  Google Scholar 

  18. Meier J, Hofferber EM, Stapleton JA, Iverson NM. Hydrogen peroxide sensors for biomedical applications. Chemosensors. 2019;7(4):64–74.

    Article  CAS  Google Scholar 

  19. Fernando CD, Soysa P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. Methods X. 2015;2:283–91.

    Google Scholar 

  20. You XY, Li YH. Direct chemiluminescence of fluorescent gold nanoclusters with classic oxidants for hydrogen peroxide sensing. Arab J Chem. 2015;12(1):69–74.

    Article  Google Scholar 

  21. Wang Y, Jiang D, Chen H. Electrochemiluminescence analysis of hydrogen peroxide using L012 modified electrodes. J Anal Test. 2020;4(2):122–7.

    Article  CAS  Google Scholar 

  22. Chen Y, Chen Z, Fang L, Weng A, Luo F, Guo L, Qiu B, Lin Z. Electrochemiluminescence sensor for cancer cell detection based on H2O2-triggered stimulus response system. J Anal Test. 2020;4(2):128–35.

    Article  CAS  Google Scholar 

  23. Kwon ND, Kim D, Swamy KMK, Yoon J. Metal-coordinated fluorescent and luminescent probes for reactive oxygen species (ROS) and reactive nitrogen species (RNS). Coordin Chem Rev. 2021;427:213581.

    Article  CAS  Google Scholar 

  24. Liu L, Wang L, Liang QS, Guo T, Guo F. Hydrogen peroxide residue determination in food samples by a glassy carbon electrode modified with cuo-swcnt-pdda nanocomposites. Microchem J. 2021;167:106327.

    Article  CAS  Google Scholar 

  25. Sharma S, Joshi P, Mehtab S, Zaidi MGH, Singhall K, Siddiqi TI. Development of non-enzymatic cholesterol electrochemical sensor based on polyindole/tungsten carbide nanocomposite. J Anal Test. 2020;4(1):13–22.

    Article  Google Scholar 

  26. Isildak Ö, Özbek O, Gürdere MB. Development of chromium(III)-selective potentiometric sensor by using synthesized pyrazole derivative as an ionophore in PVC Matrix and its applications. J Anal Test. 2020;4(4):273–80.

    Article  Google Scholar 

  27. Detpisuttitham W, Phanthong C, Ngamchana S, Rijiravanich P, Surareungchai W. Electrochemical detection of salicylic acid in pickled fruit/vegetable and juice. J Anal Test. 2020;4(4):291–7.

    Article  Google Scholar 

  28. Zhang RZ, Chen W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens Bioelectron. 2016;89:249–68.

    Article  PubMed  Google Scholar 

  29. Shamkhalichenar H, Choi JW. Review—non-enzymatic hydrogen peroxide electrochemical sensors based on reduced graphene oxide. J Electrochem Soc. 2020;167(3):037531.

    Article  CAS  Google Scholar 

  30. Atacan K, Zacar M. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater Chem Phys. 2021;266:124527.

    Article  CAS  Google Scholar 

  31. Hu Y, Hojamberdiev M, Geng D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J Mater Chem C. 2021;9(22):6970–90.

    Article  CAS  Google Scholar 

  32. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  33. Payal A, Krishnamoorthy S, Elumalai A, Moses JA, Anandharamakrishnan C. A review on recent developments and applications of nanozymes in food safety and quality analysis. Food Anal Method. 2021;14(8):1537–58.

    Article  Google Scholar 

  34. Wu JJX, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2018;48(4):1004–76.

    Article  Google Scholar 

  35. Xu Y, Xue J, Zhou Q, Zheng YJ, Chen XH, Liu SQ, Shen YF, Zhang YJ. Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interaction. Chem Int Ed. 2020;59(34):14498–503.

    Article  CAS  Google Scholar 

  36. Chen XH, Zhao LF, Wu KQ, Yang H, Zhou Q, Xu Y, Zheng YJ, Shen YF, Liu SQ, Zhang YJ. Bound oxygen-atom transfer endowing peroxidase-mimic M-N-C with high substrate selectivity. Chem Sci. 2021;12(25):8865–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang YQ, Huang YL, Feng CQ, Zhang YM, Wu HM. Electrochemical assay of hydrogen peroxide based on hybrids of Co3O4/biomass-derived carbon. Ionics. 2019;25(12):6051–9.

    Article  CAS  Google Scholar 

  38. Sivakumar M, Veeramani V, Chen SM, Madhu R, Liu SB. Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide. Microchim Acta. 2019;186(2):59.

    Article  Google Scholar 

  39. Zhang L, Yuan FF, Zhang XH, Yang LM. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chem Cent J. 2011;5:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu JL, Nie W, Wang Q, Li JW, Li H, Wen W. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon. 2018;129:29–37.

    Article  CAS  Google Scholar 

  41. Mu JS, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48(19):2540–2.

    Article  CAS  Google Scholar 

  42. Yang ZY, Bai X. A facile one-pot synthesis of Au core flower surrounding with thin Co3O4 shell for highly sensitive detection of hydrogen peroxide. Colloid Surf A. 2020;607:125445.

    Article  CAS  Google Scholar 

  43. Ye ML, Zhu Y, Lu Y, Gan L, Zhao YG. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: a review. Talanta. 2021;230:122299.

    Article  CAS  PubMed  Google Scholar 

  44. Khairy M, Ayoub HA, Banks CE. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem. 2018;255:104–11.

    Article  CAS  PubMed  Google Scholar 

  45. Yao YJ, Yu QH, Du YT, Yang M, Gao L, Rao SQ, Yang ZQ, Lan QC, Yang ZJ. Synthesis of Co3O4-NiO nano-needles for amperometric sensing of glucose. J Electroanal Chem. 2019;838:41–7.

    Article  Google Scholar 

  46. Liu YY, Wei CZ, Pang H. Mesoporous ZnO-NiO architectures for use in a high-performance nonenzymatic glucose sensor. Microchim Acta. 2014;181(13–14):1581–9.

    Article  CAS  Google Scholar 

  47. Ramachandran R, Ramachandran K, Philip GG, Ramachandran R, Therese HA. Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 2015;5(93):76538–47.

    Article  Google Scholar 

  48. Vijayakumar S, Nagamuthu S, Muralidharan G. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces. 2013;5(6):2188–96.

    Article  CAS  PubMed  Google Scholar 

  49. Su XF, Ren J, Meng XW, Ren XL, Tang FQ. A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst. 2013;138(5):1459–66.

    Article  CAS  PubMed  Google Scholar 

  50. Liu MM, An ML, Xua JQ, Liu T, Wang LL, Liu YY, Zhang JJ. Three-dimensional carbon foam supported NiO nanosheets as non-enzymatic electrochemical H2O2 sensors. Appl Surf Sci. 2021;542:148699.

    Article  CAS  Google Scholar 

  51. Bohlooli F, Yamatogi A, Mori S. Manganese oxides/carbon nanowall nanocomposite electrode as an efficient non-enzymatic electrochemical sensor for hydrogen peroxide. Sens Bio-Sens Res. 2021;31:100392.

    Article  Google Scholar 

  52. Ma XQ, Tang KL, Yang MY, Shi WB, Zhao WX. Metal-organic framework-derived yolk-shell hollow Ni/NiO@C microspheres for bifunctional non-enzymatic glucose and hydrogen peroxide biosensors. J Mater Sci. 2021;56(1):442–56.

    Article  CAS  Google Scholar 

  53. Rashed MA, Faisal M, Harraz FA, Jalalah M, Alsaiari M, Alsareii SA. A highly efficient nonenzymatic hydrogen peroxide electrochemical sensor using mesoporous carbon doped ZnO nanocomposite. J Electrochem Soc. 2021;168(2):027512.

    Article  CAS  Google Scholar 

  54. Wang M, Jiang XD, Liu JJ, Guo HL, Liu CG. Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method. Electrochim Acta. 2015;182:613–20.

    Article  CAS  Google Scholar 

  55. Atacana K, Ozacarb M. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater Chem Phys. 2021;266:124527.

    Article  Google Scholar 

  56. Zhang XM, Mao ZX, Zhao YX, Wu YT, Liu CQ, Wang XF. Highly sensitive electrochemical sensing platform: carbon cloth enhanced performance of Co3O4/rGO nanocomposite for detection of H2O2. J Mater Sci. 2020;55(13):5445–57.

    Article  CAS  Google Scholar 

  57. Hussain M, Nisar A, Qian LZ, Karim S, Khan M, Liu YG, Sun HY, Ahmad M. Ni and Co synergy in bimetallic nanowires for the electrochemical detection of hydrogen peroxide. Nanotechnology. 2021;32(20):205501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The funding of this work was provided by Natural science fund for colleges and universities in Jiangsu Province (19KJB550002), State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS2001), Nanjing University. In addition, much thanks to The Testing Center of Yangzhou University due to all the characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Jun Gao or Sheng-Qi Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 384 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JM., Shao, D., Jiang, LL. et al. Synthesis of Rod-like NiO–Co3O4 Composites for Sensitive Electrochemical Detection of Hydrogen Peroxide. J. Anal. Test. 6, 411–418 (2022). https://doi.org/10.1007/s41664-021-00202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00202-y

Keywords

Navigation