Skip to main content
Log in

Electrochemical Detection of Salicylic Acid in Pickled Fruit/Vegetable and Juice

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Salicylic acid (SA) is used as a preservative in food and a biocide in some consumer products. However, in some countries its use is prohibited. The main problem in the electroanalytical determination of SA is the formation of a passive film during the electro-oxidation of SA. To alleviate the passivation during SA measurement, the experiment was conducted by screen-printed carbon electrode (SPCE). While, differential pulse voltammetry (DPV) was essential for oxidation process to provide better sensitivity. Under conditions of optimized pH and electrolyte concentration, we have calibrated SA in the range of 0.001–0.2 mM, with and LOD of 1.6 μM. The relative standard deviation of the sensor responses to 40 µM and 100 µM SA (n = 20) was < 3%. SA recoveries in samples such as pickled green mustard, pickled bamboo shoots, pickled mango, pickled lime, pickle ginger and apple juice were found to be in the range of 84–113%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Compant S, Duffy B, Nowak J, Clement C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 2005;71(9):4951–9. https://doi.org/10.1128/AEM.71.9.4951-4959.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. FoodProtectionDivision. Prohibited Substance in Food Regulation (Thai). Food Law and Regulation. Bangkok, Thailand: Food and Drug Administration, Ministry of Public Health Thailand; 1993. p. 1–2.

  3. Trinder P. Rapid determination of salicylate in biological fluids. Biochem J. 1954;57(2):301–3. https://doi.org/10.1042/bj0570301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karim MM, Lee HS, Kim YS, Bae HS, Lee SH. Analysis of salicylic acid based on the fluorescence enhancement of the As(III)–salicylic acid system. Anal Chim Acta. 2006;576(1):136–9. https://doi.org/10.1016/j.aca.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  5. McMahon GP, O’Connor SJ, Fitzgerald DJ, le Roy S, Kelly MT. Determination of aspirin and salicylic acid in transdermal perfusates. J Chromatogr B Biomed Sci Appl. 1998;707(1–2):322–7. https://doi.org/10.1016/S0378-4347(97)00580-X.

    Article  CAS  PubMed  Google Scholar 

  6. Chocholouš P, Holík P, Šatínský D, Solich P. A novel application of Onyx™ monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta. 2007;72(2):854–8. https://doi.org/10.1016/j.talanta.2006.12.009.

    Article  CAS  PubMed  Google Scholar 

  7. Tseng P-J, Wang C-Y, Huang T-Y, Chuang Y-Y, Fu S-F, Lin Y-W. A facile colorimetric assay for determination of salicylic acid in tobacco leaves using titanium dioxide nanoparticles. Anal Methods. 2014;6(6):1759–65. https://doi.org/10.1039/C3AY42209G.

    Article  CAS  Google Scholar 

  8. Liu JW, Deng DY, Yu Y, Liu FF, Lin BX, Cao YJ, et al. In situ detection of salicylic acid binding sites in plant tissues. Luminescence. 2015;30(1):18–25. https://doi.org/10.1002/bio.2682.

    Article  CAS  PubMed  Google Scholar 

  9. Scotter MJ, Roberts DPT, Wilson LA, Howard FAC, Davis J, Mansell N. Free salicylic acid and acetyl salicylic acid content of foods using gas chromatography–mass spectrometry. Food Chem. 2007;105(1):273–9. https://doi.org/10.1016/j.foodchem.2007.03.007.

    Article  CAS  Google Scholar 

  10. Aresta A, Zambonin C. Simultaneous determination of salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic and benzoic acids in fruit, vegetables and derived beverages by SPME–LC–UV/DAD. J Pharm Biomed Anal. 2016;121:63–8. https://doi.org/10.1016/j.jpba.2015.12.016.

    Article  CAS  PubMed  Google Scholar 

  11. Sharma HSS, Carmichael E, McCall D. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid. Vib Spectrosc. 2016;83:159–69. https://doi.org/10.1016/j.vibspec.2016.01.011.

    Article  CAS  Google Scholar 

  12. do Prado TM, Machado SAS. Spectroelectrochemical study of salicylate in alkaline medium. J Solid State Electrochem. 2016;20:2569–74. https://doi.org/10.1007/s10008-015-3106-2.

    Article  CAS  Google Scholar 

  13. Kirchner C, Javier AM, Susha AS, Rogach AL, Kreft O, Sukhorukov GB, et al. Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta. 2005;67(3):486–91. https://doi.org/10.1016/j.talanta.2005.06.042.

    Article  CAS  PubMed  Google Scholar 

  14. Torriero AAJ, Luco JM, Sereno L, Raba J. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta. 2004;62(2):247–54. https://doi.org/10.1016/j.talanta.2003.07.005.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Y, Guan X, Ji H. Electrochemical solid phase micro-extraction and determination of salicylic acid from blood samples by cyclic voltammetry and differential pulse voltammetry. J Solid State Electrochem. 2009;13(9):1417–23. https://doi.org/10.1007/s10008-008-0707-z.

    Article  CAS  Google Scholar 

  16. Park J, Eun C. Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes. Electrochim Acta. 2016;194:346–56. https://doi.org/10.1016/j.electacta.2016.02.103.

    Article  CAS  Google Scholar 

  17. Rawlinson S, Mclister A, Kanyong P, Davis J. Rapid determination of salicylic acid at screen printed electrodes. Microchem J. 2018;137:71–7. https://doi.org/10.1016/j.microc.2017.09.019.

    Article  CAS  Google Scholar 

  18. Vadivaambigai A, Senthilvasan PA, Kothurkar N, Rangarajan M. Graphene-oxide-based electrochemical sensor for salicylic acid. Nanosci Nanotechnol Lett. 2015;7(2):140–6. https://doi.org/10.1166/nnl.2015.1909.

    Article  Google Scholar 

  19. Ribeiro CD, Santos JGM, de Souza JR, Pereira-da-Silva MA, Paterno LG. Electrochemical oxidation of salicylic acid at ITO substrates modified with layer-by-layer films of carbon nanotubes and iron oxide nanoparticles. J Electroanal Chem. 2017;805:53–9. https://doi.org/10.1016/j.jelechem.2017.09.063.

    Article  CAS  Google Scholar 

  20. Wang CL, Shen MJ, Ding YP, Zhao DS, Cui SQ, Li L. Facile preparation of multilayer ultrathin films based on eriochrome black T/NiAl-layered double hydroxide nanosheet, characterization and application in amperometric detection of salicylic acid. J Electroanal Chem. 2017;785:131–7. https://doi.org/10.1016/j.jelechem.2016.12.008.

    Article  CAS  Google Scholar 

  21. Ribeiro CdL, Santos JGM, Souza JR, Paterno LG. Highly sensitive determination of salicylic acid in skin care product by means of carbon nanotube/iron oxide nanoparticle voltammetric sensors. J Solid State Electrochem. 2019;23(3):783–93. https://doi.org/10.1007/s10008-018-04189-y.

    Article  CAS  Google Scholar 

  22. Sun L-J, Pan Z-Q, Xie J, Liu X-J, Sun F-T, Song F-M, et al. Electrocatalytic activity of salicylic acid on Au@Fe3O4 nanocomposites modified electrode and its detection in tomato leaves infected with Botrytis cinerea. J Electroanal Chem. 2013;706:127–32. https://doi.org/10.1016/j.jelechem.2013.07.038.

    Article  CAS  Google Scholar 

  23. Reza Ganjali M, Nejad FG, Tajik S, Beitollahi H, Pourbasheer E, Larijanii B. Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int J Electrochem Sci. 2017;12(11):9972–82. https://doi.org/10.20964/2017.11.49.

    Article  CAS  Google Scholar 

  24. Cao XD, Zhu XT, He SD, Xu X, Ye YK, Gunasekaran S. Gold nanoparticle-doped three-dimensional reduced graphene hydrogel modified electrodes for amperometric determination of indole-3-acetic acid and salicylic acid. Nanoscale. 2019;11(21):10247–56. https://doi.org/10.1039/c9nr01309a.

    Article  CAS  PubMed  Google Scholar 

  25. Ai S, Wang Q, Li H, Jin L. Study on production of free hydroxyl radical and its reaction with salicylic acid at lead dioxide electrode. J Electroanal Chem. 2005;578(2):223–9. https://doi.org/10.1016/j.jelechem.2005.01.002.

    Article  CAS  Google Scholar 

  26. Supalkova V, Petrek J, Havel L, Krizkova S, Petrlova J, Adam V, et al. Electrochemical sensors for detection of acetylsalicylic acid. Sensors (Basel). 2006;6(11):1483–97.

    Article  CAS  Google Scholar 

  27. Enache TA, Fatibello-Filho O, Oliveira-Brett AM. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes. Comb Chem High Throughput Screen. 2010;13(7):569–77. https://doi.org/10.2174/1386207311004070569.

    Article  CAS  PubMed  Google Scholar 

  28. Petrek J, Havel L, Petrlova J, Adam V, Potesil D, Babula P, et al. Analysis of salicylic acid in willow barks and branches by an electrochemical method. Russ J Plant Physiol. 2007;54(4):553–8. https://doi.org/10.1134/S1021443707040188.

    Article  CAS  Google Scholar 

  29. Skoog D, Holler F, Crouch S. Principles of instrumental analysis. Boston: Cengage Learning; 2007.

    Google Scholar 

  30. Boumya W, Laghrib F, Lahrich S, Farahi A, Achak M, Bakasse M, et al. Electrochemical behavior study of salicylic acid following azo dye formation with 2,4-dinitrophenylhydrazine: analytical evaluation. S Afr J Chem Eng. 2018;25:48–53. https://doi.org/10.1016/j.sajce.2018.01.002.

    Article  Google Scholar 

  31. Luo ZS, Wu X, Xie Y, Chen C. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chem. 2012;131(2):456–61. https://doi.org/10.1016/j.foodchem.2011.09.007.

    Article  CAS  Google Scholar 

  32. AOAC International. Official methods of analysis of AOAC international. 17th ed. 2000.

  33. Zavar MHA, Heydari S, Rounaghi GH. Electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissue composite. Arab J Sci Eng. 2013;38(1):29–36. https://doi.org/10.1007/s13369-012-0411-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by Agricultural Research Development Agency (Grant no. CRP5507010820), and the King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund” (Grant number 60000331).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patsamon Rijiravanich or Werasak Surareungchai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1932 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Detpisuttitham, W., Phanthong, C., Ngamchana, S. et al. Electrochemical Detection of Salicylic Acid in Pickled Fruit/Vegetable and Juice. J. Anal. Test. 4, 291–297 (2020). https://doi.org/10.1007/s41664-020-00127-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00127-y

Keywords

Navigation