Skip to main content
Log in

Exogenous N-acetylated chitooligosaccharides application improves osmotic stress and water deficit tolerance in Oryza sativa (cv. Swarna Sub-1) inducing seed germination, seedling growth, and biochemical activities

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.) is an important food crop in India and this crop is sensitive to stress generated due to water-deficit/osmotic stress during germination and seedling growth ultimately showing detrimental effects on the growth & yield. In the present study, the effect of crude N-acetyl chitooligosaccharide (N-AcCOS) extract produced by microbial degradation of chitin was investigated on the germination performance of Swarna Sub-1 both under normal as well as osmotic stress conditions. Effects of exogenous application of N-AcCOS on the physiological and biochemical characteristics of rice were studied. The seeds were pre-soaked with three concentrations of N-AcCOS (0.2%, 0.5%, and 1%) at 25 °C temperature for 24 h. The results revealed that under stress conditions, germination percentage decreased for unsoaked seeds whereas for seeds presoaked in 1% (w/v) N-AcCOS solution showed a statistically significant improvement in the germination performance. In the case of optimal growth conditions, N-AcCOS presoaking resulted in the early emergence of radical and enhancement in other germination parameters like FGP, GI, DGP, and MGT. The microbially produced N-AcCOS, in its crude form, was applied to rice seedlings through foliar spraying under greenhouse conditions and was able to stabilize the membrane permeability, increased the chlorophyll content, and proline accumulation. The antioxidant enzyme levels like SOD, POD, and CAT was enhanced under the water-deficit stress after the foliar application of 300 mg/L of microbially produced N-AcCOS. Seed presoaking in N-AcCOS and exogenous application of N-AcCOS could be an efficient measure in mitigating the water-deficit stress in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

N-AcCOS:

N-acetyl chitooligosaccharide

SOD:

Superoxide dismutase

POD:

Peroxidase

CAT:

Catalase

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

NBT:

Nitro blue tetrazolium

GDHP:

Guaiacol dehydrogenation product

MGT:

Mean germination time

FGP:

Final germination percentage

DGP:

Daily germination percentage

GI:

Germination index

FDG:

First day of germination

LDG:

Last day of germination

TSG:

Time spread of germination

References

  • Al-Mudaris, M. (1998). Notes on various parameters recording the speed of seed germination. Der Tropenlandwirt-Journal of Agriculture in the Tropics and Subtropics, 99(2), 147–154.

    Google Scholar 

  • Al-Tawaha, A. R. M., & Al-Ghzawi, A. L. A. (2013). Effect of chitosan coating on seed germination and salt tolerance of lentil (Lens culinaris L.). Research on Crops, 14(2), 489–491.

    Google Scholar 

  • Arjenaki, F. G., Jabbari, R., & Morshedi, A. (2012). Evaluation of drought stress on relative water content, chlorophyll content and mineral elements of wheat (Triticum aestivum L.) varieties. International Journal of Agriculture and Crop Sciences, 4(11), 726–729.

    Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  • Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195(1), 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Behera, H. T., Mojumdar, A., Das, S. R., Jena, S., & Ray, L. (2020). Production of N-acetyl chitooligosaccharide by novel Streptomyces chilikensis strain RC1830 and its evaluation for anti-radical, anti-inflammatory, anti-proliferative and cell migration potential. Bioresource Technology Reports, 11, 100428.

    Article  Google Scholar 

  • Boonlertnirun, S., Boonraung, C., & Suvanasara, R. (2017). Application of chitosan in rice production. Journal of metals, materials and minerals 18(2).

  • Chai, Y., Jiang, C., Shi, L., Shi, T., & Gu, W. (2010). Effects of exogenous spermine on sweet sorghum during germination under salinity. Biologia Plantarum, 54(1), 145–148.

    Article  Google Scholar 

  • ChanceB, M. (1955). Assay of catalase and peroxidase. Methods in Enzymology, 2(55), 764–775.

    Article  Google Scholar 

  • Chen, K., & Arora, R. (2011). Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Science, 180(2), 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Dalvi, S., Wani, K., Ithape, D., & Suprasanna, P. (2022). Potential of biopriming with irradiated chitosan for sugarcane micropropagation. In Radiation-Processed Polysaccharides (pp. 179–204). Academic Press.

  • Dash, S., Routray, B., Mohanty, S., & Behera, N. (2020). Evaluation of excess water tolerant rice varieties Swarna sub-1 and CR-1009 sub-1 under Head to Head Project in East and South-Eastern Coastal Plain zone of Odisha. Current Agriculture Research Journal, 8(1), 39–45.

    Article  Google Scholar 

  • Dhawan, V. (2017). Water and agriculture in India. Background paper for the South Asia expert panel during the Global Forum for Food and Agriculture.

  • Elieh-Ali-Komi, D., & Hamblin, M. R. (2016). Chitin and chitosan: Production and application of versatile biomedical nanomaterials. International Journal of Advanced Research, 4(3), 411.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq, M., Basra, S., Ahmad, N., & Hafeez, K. (2005). Thermal hardening: A new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, 47(2), 187–193.

    Article  Google Scholar 

  • Farouk, S., Mosa, A., Taha, A., & El-Gahmery, A. (2011). Protective effect of humic acid and chitosan on radish (Raphanus sativus L. var. sativus) plants subjected to cadmium stress. Journal of Stress Physiology & Biochemistry 7(2).

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, Y.-J., Hu, J., Wang, X.-J., & Shao, C.-X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B, 10(6), 427–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed, A., Sheikh, M., Hameed, A., Farooq, T., Basra, S., & Jamil, A. (2014). Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. Philippine Agricultural Scientist, 97(3), 294–299.

    Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden, S. T., & Fisher, M. (2015). Subsidies promote use of drought tolerant maize varieties despite variable yield performance under smallholder environments in Malawi. Food Security, 7(6), 1225–1238.

    Article  Google Scholar 

  • Hsu, S., & Lockwood, J. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environment Microbiology, 29(3), 422–426.

    Article  CAS  Google Scholar 

  • Jabeen, N., & Ahmad, R. (2013). The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. Journal of the Science of Food and Agriculture, 93(7), 1699–1705.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11(1), 100–105.

    Google Scholar 

  • Jiao, Z., Li, Y., Li, J., Xu, X., Li, H., Lu, D., & Wang, J. (2012). Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research, 55(3–4), 293–301.

    Article  CAS  Google Scholar 

  • Kader, M. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New South Wales, 138, 65–75.

    Google Scholar 

  • Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36–51.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. N., Siddiqui, M. H., Mohammad, F., Naeem, M., & Khan, M. M. A. (2010). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiologiae Plantarum, 32(1), 121.

    Article  CAS  Google Scholar 

  • Li, S., Chen, J., Islam, E., Wang, Y., Wu, J., Ye, Z., Yan, W., Peng, D., & Liu, D. (2016). Cadmium-induced oxidative stress, response of antioxidants and detection of intracellular cadmium in organs of moso bamboo (Phyllostachys pubescens) seedlings. Chemosphere, 153, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Liaqat, F., & Eltem, R. (2018). Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydrate Polymers, 184, 243–259.

    Article  CAS  PubMed  Google Scholar 

  • Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchawan, S., Lotrakul, P., Bunjongrat, R., Chaidee, A., & Bangyeekhun, T. (2008). Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Scientia Horticulturae, 116(1), 65–72.

    Article  CAS  Google Scholar 

  • Ma, L.-j., Zhang, Y., Bu, N., Li, N., & Liu, T. (2010). Physiological characters of oligochitosan on alleviating Cd toxicity of wheat seedling [J]. Environmental Science & Technology 6.

  • Ma, Y., Zhang, J., Li, X., Zhang, S., & Lan, H. (2016). Effects of environmental stress on seed germination and seedling growth of Salsola ferganica (Chenopodiaceae). Acta Ecologica Sinica, 36(6), 456–463.

    Article  Google Scholar 

  • Mahdavi, B., & Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian Journal of BioSciences, 7(1), 69–76.

    Article  CAS  Google Scholar 

  • Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A. F., El-Behairy, U. A., Sorlini, C., & Cherif, A. (2012). A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One, 7(10), e48479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minhas, P. S., Rane, J., & Pasala, R. K. (2017). Abiotic stress management for resilient agriculture. Springer.

    Book  Google Scholar 

  • Misra, N., & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181–189.

    Article  CAS  Google Scholar 

  • Mut, Z., & Akay, H. (2010). Effect of seed size and drought stress on germination and seedling growth of naked oat (Avena sativa L.). Bulgarian Journal of Agricultural Science, 16(4), 459–467.

    Google Scholar 

  • Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy, 10(8), 1120.

    Article  CAS  Google Scholar 

  • Orzali, L., Corsi, B., Forni, C., & Riccioni, L. (2017). Chitosan in agriculture: a new challenge for managing plant disease. Biological Activities and Application of Marine Polysaccharides 17–36.

  • Palanog, A. D., Swamy, B. M., Shamsudin, N. A. A., Dixit, S., Hernandez, J. E., Boromeo, T. H., Cruz, P. C. S., & Kumar, A. (2014). Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crops Research, 161, 46–54.

    Article  Google Scholar 

  • Patil, B., & Chetan, H. (2018). Foliar fertilization of nutrients. Marumegh, 3(1), 49–53.

    Google Scholar 

  • Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., & Postma, J. A. (2012). Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39(11), 839–850.

    Article  PubMed  Google Scholar 

  • Ray, L., Suar, M., Pattnaik, A. K., & Raina, V. (2013). Streptomyceschilikensis sp. nov., a halophilic streptomycete isolated from brackish water sediment. International Journal of Systematic and Evolutionary Microbiology, 63(8), 2757–2764.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, M., & Vora, A. (1986). Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica (praha), 20(1), 50–55.

    CAS  Google Scholar 

  • Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.

    Article  CAS  Google Scholar 

  • Seckin, B., Sekmen, A. H., & Türkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation, 28(1), 12.

    Article  CAS  Google Scholar 

  • Sharma, K., Singh, U., Sharma, P., Kumar, A., & Sharma, L. (2015). Seed treatments for sustainable agriculture-A review. Journal of Applied and Natural Science, 7(1), 521–539.

    Article  Google Scholar 

  • Sheokand, S., Kumari, A., & Sawhney, V. (2008). Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiology and Molecular Biology of Plants, 14(4), 355–362.

    Article  CAS  PubMed  Google Scholar 

  • Shirling, E. T., & Gottlieb, D. (1966). Methods for characterization of Streptomyces species1. International Journal of Systematic and Evolutionary Microbiology, 16(3), 313–340.

    Google Scholar 

  • Singh, R., Reddy, J., Singh, V., Pani, D., Ghosh, R., Mackill, D., & Singh, U. (2009). Swarna sub 1-A boon for submergence-prone rainfed Lowlands of Eastern India. In: Proceedings of 14th Australian Plant Breeding and 11th SABRAO Congress.

  • Singh, S., Prasad, S., Yadav, V., Kumar, A., Jaiswal, B., Kumar, A., Khan, N., & Dwivedi, D. (2018). Effect of drought stress on yield and yield components of rice (Oryza sativa L.) genotypes. Int. J. Curr. Microbiol. Appl. Sci, 7, 2752–2759.

    Article  Google Scholar 

  • Souza, C. P., Almeida, B. C., Colwell, R. R., & Rivera, I. N. (2011). The importance of chitin in the marine environment. Marine Biotechnology, 13(5), 823–830.

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613–619.

    Article  CAS  Google Scholar 

  • Sun, L., Hussain, S., Liu, H., Peng, S., Huang, J., Cui, K., & Nie, L. (2015). Implications of low sowing rate for hybrid rice varieties under dry direct-seeded rice system in Central China. Field Crops Research, 175, 87–95.

    Article  Google Scholar 

  • Tuan, P. A., Sun, M., Nguyen, T.-N., Park, S., & Ayele, B. T. (2019). Molecular mechanisms of seed germination (pp. 1–24). Elsevier.

    Google Scholar 

  • Uchida, Y. (1989). Preparation of chitosan oligomers with purified chitosanase and its application. In: Proc. 4th Int. Conf. Chitin/Chitosan, 1989, Elsevier Applied Science.

  • Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agronomy for Sustainable Development, 35(2), 569–588.

    Article  CAS  Google Scholar 

  • Yang, F., Hu, J., Li, J., Wu, X., & Qian, Y. (2009). Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regulation, 58(2), 131–136.

    Article  CAS  Google Scholar 

  • Younis, M. E., Hasaneen, M. N., & Kazamel, A. M. (2010). Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma, 239(1–4), 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, M., Tao, Y., Hussain, S., Jiang, Q., Peng, S., Huang, J., Cui, K., & Nie, L. (2016). Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 78(2), 167–178.

    Article  CAS  Google Scholar 

  • Zhou, Y.-G., Yang, Y.-D., Qi, Y.-G., Zhang, Z.-M., & Hu, X.-J. (2002). Effects of chitosan on some physiological activity in germinating seed of peanut. Peanut Science and Technology, 1, 4.

    Google Scholar 

  • Zong, H., Li, K., Liu, S., Song, L., Xing, R., Chen, X., & Li, P. (2017). Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere, 181, 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Zou, P., Li, K., Liu, S., Xing, R., Qin, Y., Yu, H., Zhou, M., & Li, P. (2015). Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydrate Polymers, 126, 62–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to National Rice Research Institute, Cuttack, Odisha, India for providing the Swarna Sub-1 variety seeds. The authors acknowledge the support of BioCARe (DBT), Govt of India.

Author information

Authors and Affiliations

Authors

Contributions

LR and HTB: Conceptualization, Methodology. HTB, LR, MKG, AM, and SD: Data curation, Writing, original draft preparation, Visualization, Investigation. Himadri TB, LR: Writing. LR: Reviewing and editing.

Corresponding author

Correspondence to Lopamudra Ray.

Ethics declarations

Conflict of interest

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, H.T., Mojumdar, A., Das, S. et al. Exogenous N-acetylated chitooligosaccharides application improves osmotic stress and water deficit tolerance in Oryza sativa (cv. Swarna Sub-1) inducing seed germination, seedling growth, and biochemical activities. Plant Physiol. Rep. 27, 443–457 (2022). https://doi.org/10.1007/s40502-022-00680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-022-00680-x

Keywords

Navigation