Skip to main content
Log in

An extensive review on chromium (vi) removal using natural and agricultural wastes materials as alternative biosorbents

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Several conventional techniques for heavy metals decontamination for instance ion exchange, evaporation, precipitation and electroplating have been utilized in preceding years. Though these techniques have some drawbacks, adsorption using low-cost biosorbents is environmentally friendly. In this study, the potential of several natural and agricultural wastes as economical biosorbents for the reduction of Cr(VI) ions from polluted water has been reviewed. The application of adsorption models, as well as the impact of adsorption factors on heavy metals eradication, has been considered in this review. The study revealed that efficient reduction of Cr(VI) from water and wastewaters is highly dependent on the pH of the solution, shaking time, adsorbent type, initial concentration and temperature. The review of the relevant literature indicates that the maximum removal efficiency of Cr(VI) using the various low-cost adsorbents ranged from 50.0–100.0% with optimum pH and contact time ranging from 2.0–6.0 and 30.0–180.0 min, respectively at room temperature (25.0 °C). Furthermore, considering all the studies reviewed, the pseudo-second-kinetics and Langmuir isotherm are the dominant models that best described the Cr(VI) equilibrium data. The thermodynamic parameters suggested that the biosorption of Cr(VI) on the biosorbents was spontaneous, realistic and endothermic at the temperature range of 30.0–45.0 °C. It is found that the natural and agricultural wastes as cheap biosorbents are feasible replacements to commercial activated carbons for metal-contaminated water treatment. However, gaps have been identified to improve applicability, regeneration, reuse and safe discarding of the laden adsorbents, optimization and commercialization of suitable agricultural adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfarra RS, Ali NE, Yusoff MM. Removal of heavy metals by natural adsorbent: A review. Int J Biosci. 2014;6655:130–9. https://doi.org/10.12692/ijb-/4.7.130-139.

    Article  Google Scholar 

  2. Bayuo J, Pelig-Ba KB, Abukari MA. Adsorptive removal of chromium (VI) from aqueous solution unto groundnut shell. Appl Water Sci. 2019;9(4):1–11. https://doi.org/10.1007/s13201-019-0987-8.

    Article  CAS  Google Scholar 

  3. Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, et al. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. J Environ Heal Sci Eng. 2019;17(2):873–88. https://doi.org/10.1007/s40201-019-00405-7.

    Article  CAS  Google Scholar 

  4. Bayuo J, Abukari MA, Pelig-Ba KB. Equilibrium isotherm studies for the sorption of hexavalent chromium (VI) onto groundnut shell. IOSR J Appl Chem. 2018;11(12):40–6. https://doi.org/10.9790/5736-1112014046.

    Article  CAS  Google Scholar 

  5. Bayuo J, Pelig-Ba KB, Abukari MA. Optimization of adsorption parameters for effective removal of lead (II) from aqueous solution. Phys Chem An Indian J. 2019;14(1):1–25.

    Google Scholar 

  6. Bazrafshan E, Mahvi AH, Naseri S, Mesdaghinia AR. Performance evaluation of electrocoagulation process for removal of chromium (VI) from synthetic chromium solutions using iron and aluminum electrodes. Turkish J Eng Environ Sci. 2008;32(2):59–66.

    CAS  Google Scholar 

  7. Daneshvar E, Zarrinmehr MJ, Kousha M, Hashtjin AM, Saratale GD, Maiti A, et al. Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies. Bioresour Technol. 2019;293(12):56–64. https://doi.org/10.1016/j.biortech.2019.122064.

    Article  CAS  Google Scholar 

  8. Asgari AR, Vaezi F, Nasseri S, Dördelmann O, Mahvi AH, Fard ED. Removal of hexavalent chromium from drinking water by granular ferric hydroxide. Iran J Environ Heal Sci Eng. 2008;5(4):277–82.

    CAS  Google Scholar 

  9. Adelekan B, Abegunde K. Heavy metals contamination of soil and groundwater at automobile mechanic villages in Ibadan, Nigeria. Int J Phys Sci. 2011;6(5):1045–58. https://doi.org/10.5897/IJPS10.495.

    Article  CAS  Google Scholar 

  10. Bhagure GR, Mirgane SR. Heavy metal concentrations in groundwaters and soils of thane region of Maharashtra, India. Environ Monit Assess. 2011;173(1–4):643–52. https://doi.org/10.1007/s10661-010-1412-9.

    Article  CAS  Google Scholar 

  11. El Bouraie MM, El Barbary AA, Yehia MM, Motawea EA. Heavy metal concentrations in surface river water and bed sediments at Nile Delta in Egypt. Suo. 2010;61(1):1–12.

    Google Scholar 

  12. Aderinola OJ, Clarke EO, Olarinmoye OM, Kusemiju V, Anatekhai MA. Heavy metals in surface water, sediments, fish and Perwinkles of Lagos lagoon. Environ Sci. 2009;5(5):609–17.

    CAS  Google Scholar 

  13. Agya PJ. Levels of heavy metals in Gubi dam water Bauchi, Nigeria. Glob J Environ Sci. 2009;8(2):29–37.

    Google Scholar 

  14. Varalakshmi LR, Ganeshamurthy AN. Heavy metal contamination of water bodies, soils and vegetables in peri-urban areas of Banglore city of India. J Hortic Sci. 2012;7:62–7.

    Google Scholar 

  15. Mahvi AH, Nabizadeh R, Gholami F, Khairi A. Adsorption of chromium from wastewater by Platanus orientalis leaves. Iran J Environ Heal Sci Eng. 2007;4(3):191–6.

    CAS  Google Scholar 

  16. Bayuo J, Abdullai MA, Pelig-Ba KB. Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl Water Sci. 2020;10(6):1–12. https://doi.org/10.1007/s13201-020-01213-3.

    Article  CAS  Google Scholar 

  17. Babel S, Kurniawan TTA. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere. 2004;54(7):951–67. https://doi.org/10.1016/j.chemo-sphere.2003.10.001.

    Article  CAS  Google Scholar 

  18. Samiey B, Cheng CH, Wu J. Organic inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions. Materials (Basel). 2014;7(2):673–726. https://doi.org/10.3390/ma7020673.

    Article  CAS  Google Scholar 

  19. Sante KAA, Tow WJN. Status of environmental contamination in Ghana , the perspective of a research scientist. Interdiscip Stud Environ Chem Environ Res Asia. 2009:253–60 Available: http://www.terrapub.co.jp/online-proceedings-/ec/02/pdf/ERA30.pdf.

  20. Obiri S. Determination of heavy metals in water from boreholes in dumasi in the Wassa West District of western region of republic of Ghana. Environ Monit Assess. 2007;130(1–3):455–63. https://doi.org/10.1007/s10661-006-9435-y.

    Article  CAS  Google Scholar 

  21. Manu A, Twumasi YA, Coleman TL. Application of remote sensing and GIS technologies to assess the impact of surface mining at Tarkwa, Ghana. Int Geosci Remote Sens Symp. 2004;1(1):572–4. https://doi.org/10.1109/igarss.2004.1369091.

    Article  Google Scholar 

  22. Essumang DK, Dodoo DK, Obiri S, Yaney JY. Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagititolium) and Watercocoyam (Colocasia esculenta) in Tarkwa a mining community. Bull Environ Contam Toxicol. 2007;79(4):377–9. https://doi.org/10.1007/s00128-007-9244-1.

    Article  CAS  Google Scholar 

  23. Hanson R, Dodoo DK, Essumang DK, Blay J Jr, Yankson K. The effect of some selected pesticides on the growth and reproduction of fresh water Oreochromis niloticus, Chrysicthys nigrodigitatus and Clarias gariepinus. Bull Environ Contam Toxicol. 2007;79(5):544–7. https://doi.org/10.1007/s00128-007-9279-3.

    Article  CAS  Google Scholar 

  24. Yidana SM, Ophori D, Banoeng-Yakubo B. A multivariate statistical analysis of surface water chemistry data-the Ankobra Basin, Ghana. J Environ Manag. 2008;86(1):80–7. https://doi.org/10.1016/j.jenvman.2006.11.023.

    Article  CAS  Google Scholar 

  25. Ato AF, Samuel O, Oscar YD, Alex P, Moi N, Akoto B. Mining and heavy metal pollution: assessment of aquatic environments in Tarkwa (Ghana) using multivariate statistical analysis. J Environ Stat. 2010;1(4):1–13.

    Google Scholar 

  26. Akabzaa T, Banoeng-Yakubo B, Seyire J. Impact of mining activities on water resources in the vicinity of the Obuasi mine. West African J Appl Ecol. 2009;11(1):48–53. https://doi.org/10.4314/wajae.v11i1.45719.

    Article  Google Scholar 

  27. Esalah JO, Weber ME, Vera JH. Removal of lead from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Sep Purif Technol. 1999;18(1):25–36. https://doi.org/10.1016/S1383-5866(99)00046-5.

    Article  Google Scholar 

  28. Yurlova L, Kryvoruchko A, Kornilovich B. Removal of Ni(II) ions from wastewater by micellar-enhanced ultrafiltration. Desalination. 2002;144(1–3):255–60. https://doi.org/10.1016/S0011-9164(02)00321-1.

    Article  CAS  Google Scholar 

  29. Ghurye G, Clifford D, Tripp A. Iron coagulation and direct microfiltration to remove arsenic from groundwater. J / Am Water Work Assoc. 2004;96(4):143–52.

    Article  CAS  Google Scholar 

  30. Emamjomeh M, Sivakumar M. (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag. 2009;90:1663–79 Available: http://www.sciencedirect.com/science/-article/pii/S0301479708003617.

    Article  CAS  Google Scholar 

  31. Greenlee L, Lawler D, Freeman B, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 2009;43(9):2317–48. https://doi.org/10.1016/j.watres.2009.03.010.

    Article  CAS  Google Scholar 

  32. Lertlapwasin R, Bhawawet N, Imyim A, Fuangswasdi S. Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants. Sep Purif Technol. 2010;72(1):70–6. https://doi.org/10.1016/j.seppur.2010.01.004.

    Article  CAS  Google Scholar 

  33. Mahmoud A, Hoadley AFA. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res. 2012;46(10):3364–76. https://doi.org/10.1016/j.watres.-2012.03.039.

    Article  CAS  Google Scholar 

  34. Tuama AH, Mohammed AA, Tuama AH, Mohammed AA. Removal of heavy metal ions from aqueous solutions using tobacco leaves as a sorbent Scholars Research Library. Euro J Appl Eng Sci Res. 2014;3(2):19–32.

    CAS  Google Scholar 

  35. Pan B, Pan B, Zhang W, Lv L, Zhang Q, Zheng S. Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J. 2009;151(1–3):19–29. https://doi.org/10.1016/j.cej.2009.02.036.

    Article  CAS  Google Scholar 

  36. Gunatilake SK. Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud. 2015;1(1):12–8.

    Google Scholar 

  37. Tripathi A, Rawat Ranjan M. Heavy metal removal from wastewater using low cost adsorbents. J Bioremediation Biodegrad. 2015;06(06):1–5. https://doi.org/10.4172/2155-6199.1000315.

    Article  CAS  Google Scholar 

  38. Lakherwal D. Adsorption of heavy metals: a review. Int J Environ Res Dev. 2014;4(1):2249–3131. https://doi.org/10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  39. Geetha KS, Belagali SL. Removal of heavy metals and dyes using low-cost adsorbents from aqueous medium- , A Review. IOSR J Environ Sci Toxicol Food Technol, IOSR-JESTFT. 2013;4(3):56–68.

    Article  Google Scholar 

  40. Aeisyah A, Ismail MHS, Lias K, Izhar S. Adsorption process of heavy metals by low-cost adsorbent: a review. Res J Chem Environ. 2014;18(4):91–102.

    CAS  Google Scholar 

  41. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review. J Environ Manag. 2011;92(3):407–18. https://doi.org/10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  42. Athar M, Farooq U, Hussain B. Azadirachata indicum (Neem): an effective biosorbent for the removal of lead (II) from aqueous solutions. Bull Environ Contam Toxicol. 2007;79(3):288–92. https://doi.org/10.1007/s00128-007-9217-4.

    Article  CAS  Google Scholar 

  43. Ahmaruzzaman M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interf Sci. 2011;166(1–2):36–59. https://doi.org/10.1016/j.cis.2011.04.005.

    Article  CAS  Google Scholar 

  44. Adane T, Haile D, Dessie A, Abebe Y, Dagne H. Response surface methodology as a statistical tool for optimization of removal of chromium (VI) from aqueous solution by Teff (Eragrostis teff) husk activated carbon. Appl Water Sci. 2020;10(1):1–13. https://doi.org/10.1007/s13201-019-1120-8.

    Article  CAS  Google Scholar 

  45. Belachew N, Hinsene H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl Water Sci. 2020;10(1):1–8. https://doi.org/10.1007/s13201-019-1121-7.

    Article  CAS  Google Scholar 

  46. Dawodu FA, Akpan BM, Akpomie KG. Sequestered capture and desorption of hexavalent chromium from solution and textile wastewater onto low cost Heinsia crinita seed coat biomass. Appl Water Sci. 2020;10(1):1–15. https://doi.org/10.1007/s13201-019-1114-6.

    Article  CAS  Google Scholar 

  47. Kumar H, Maurya KL, Gehlaut AK, Singh D, Maken S, Gaur A, et al. Adsorptive removal of chromium(VI) from aqueous solution using binary bio-polymeric beads made from bagasse. Appl Water Sci. 2020;10(1):1–10. https://doi.org/10.1007/s13201-019-1101-y.

    Article  CAS  Google Scholar 

  48. Samaraweera APGMV, Priyantha N, Gunathilake WSS, Kotabewatta PA, Kulasooriya TPK. Biosorption of Cr(III) and Cr(VI) species on NaOH-modified peel of Artocarpus nobilis fruit. 1. Investigation of kinetics. Appl Water Sci. 2020;10(5):1–11. https://doi.org/10.1007/s13201-020-01187-2.

    Article  CAS  Google Scholar 

  49. Mondal N, Basu S, Sen K, Debnath P. Potentiality of mosambi (Citrus limetta) peel dust toward removal of Cr(VI) from aqueous solution: an optimization study. Appl Water Sci. 2019;9(4):1–13. https://doi.org/10.1007/s13201-019-0997-6.

    Article  CAS  Google Scholar 

  50. Puszkarewicz A, Kaleta J. Chromium (VI) adsorption on modified activated carbons. Appl Sci. 2019;9(17). https://doi.org/10.3390/app9173549.

  51. Manzoor Q, Sajid A, Hussain T, Iqbal M, Abbas M, Nisar J. Efficiency of immobilized Zea mays biomass for the adsorption of chromium from simulated media and tannery wastewater. J Mater Res Technol. 2019;8(1):75–86. https://doi.org/10.1016/j.jmrt.2017.05.016.

    Article  CAS  Google Scholar 

  52. Parlayici Ş, Pehlivan E. Comparative study of Cr(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic. J Anal Sci Technol. 2019;10(1). https://doi.org/10.1186/s40543-019-0175-3.

  53. Özsin G, Kılıç M, Apaydın-Varol E, Pütün AE. Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl Water Sci. 2019;9(3):1–14. https://doi.org/10.1007/s13201-019-0942-8.

    Article  CAS  Google Scholar 

  54. Yusuff AS. Optimization of adsorption of Cr(VI) from aqueous solution by Leucaena leucocephala seed shell activated carbon using design of experiment. Appl Water Sci. 2018;8(8):1–11. https://doi.org/10.1007/s13201-018-0850-3.

    Article  CAS  Google Scholar 

  55. Uddin MK, Salah MM. Statistical analysis of Litchi chinensis’s adsorption behavior toward Cr(VI). Appl Water Sci. 2018;8(5):1–9. https://doi.org/10.1007/s13201-018-0784-9.

    Article  CAS  Google Scholar 

  56. Nur-E-Alam M, Mia MAS, Ahmad F, Mafizur Rahman M. Adsorption of chromium (Cr) from tannery wastewater using low-cost spent tea leaves adsorbent. Appl Water Sci. 2018;8(5):1–7. https://doi.org/10.1007/s13201-018-0774-y.

    Article  CAS  Google Scholar 

  57. Jinhui Y, Li C, Yang B, Kang S, Zhang Z. Study on Adsorption of Chromium (VI) by Activated Carbon from Cassava Sludge. IOP Conf Ser Earth Environ Sci. 2018;128(1). https://doi.org/10.1088/1755-1315/128/1/012017.

  58. Rai MK, et al. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from almond shell: Kinetics, equilibrium and thermodynamics study. J Water Supply Res Technol - AQUA. 2018;67(8):724–37. https://doi.org/10.2166/aqua.2018.047.

    Article  Google Scholar 

  59. Ba S, Ennaciri K, Yaacoubi A, Alagui A, Bacaoui A. Activated carbon from olive wastes as an adsorbent for chromium ions removal. Iran J Chem Chem Eng. 2018;37(6):107–23.

    CAS  Google Scholar 

  60. Gorzin F, Abadi MMBR. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorpt Sci Technol. 2018;36(1–2):149–69. https://doi.org/10.1177/0263617416686976.

    Article  CAS  Google Scholar 

  61. Labied R, Benturki O, Eddine Hamitouche AY, Donnot A. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol. 2018;36(3–4):1066–99. https://doi.org/10.1177/0263617417750739.

    Article  CAS  Google Scholar 

  62. Gupta A, Balomajumder C. Statistical optimization of process parameters for the simultaneous adsorption of Cr(VI) and phenol onto Fe-treated tea waste biomass. Appl Water Sci. 2017;7(8):4361–74. https://doi.org/10.1007/s13201-017-0582-9.

    Article  CAS  Google Scholar 

  63. Pakade VE, Ntuli TD, Ofomaja AE. Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder. Appl Water Sci. 2017;7(6):3015–30. https://doi.org/10.1007/s13201-016-0412-5.

    Article  CAS  Google Scholar 

  64. Nasseh N, Taghavi L, Barikbin B, Harifi-Mood AR. The removal of Cr(VI) from aqueous solution by almond green hull waste material: kinetic and equilibrium studies. J Water Reuse Desalin. 2017;7(4):449–60. https://doi.org/10.2166/wrd.2016.047.

    Article  Google Scholar 

  65. Kucic D, Simonic M, Furac L. Batch adsorption of Cr(VI) ions on zeolite and agroindustrial waste. Chem Biochem Eng Q. 2018;31(4):497–507. https://doi.org/10.15255/CABEQ.2017.1100.

    Article  Google Scholar 

  66. Song D, et al. Adsorptive removal of toxic chromium from waste-water using wheat straw and Eupatorium adenophorum. PLoS One. 2016;11(12). https://doi.org/10.1371/-journal.pone.0167037.

  67. Ghorbani-Khosrowshahi S, Behnajady MA. Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom. Int J Environ Sci Technol. 2016;13(7):1803–14. https://doi.org/10.1007/s13762-016-0978-3.

    Article  CAS  Google Scholar 

  68. Velumani K, Kumar PE, Sivakumar V. Adsorption of chromium (VI) using a nonconventional adsorbent. Rasayan J Chem. 2016;9(2):149–59.

    CAS  Google Scholar 

  69. Regmi S, Ghimire KN, Pokhrel MR, Khadka DB. Adsorptive removal and recovery of Aluminium (III), Iron (II), and chromium (VI) onto a low-cost functionalized Phragmities Karka waste. J Inst Sci Technol. 2015;20(2):145–52. https://doi.org/10.3126/jist.v20i2.13969.

    Article  Google Scholar 

  70. Sathish T, Vinithkumar NV, Dharani G, Kirubagaran R. Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: kinetic and thermodynamic evaluation. Appl Water Sci. 2015;5(2):153–60. https://doi.org/10.1007/s13201-014-0174-x.

    Article  CAS  Google Scholar 

  71. Mekonnen E, Yitbarek M, Soreta TR. Kinetic and thermodynamic studies of the adsorption of Cr(VI) onto some selected local adsorbents. South African J Chem. 2015;68:45–52. https://doi.org/10.17159/0379-4350/2015/v68a7.

    Article  CAS  Google Scholar 

  72. Duranoglu D, Beker U. Cr(VI) adsorption onto biomass waste material-derived activated carbon. In: Desalination Updates; 2015.

    Google Scholar 

  73. Dula T, Siraj K, Kitte SA. Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (Oxytenanthera abyssinica). ISRN Environ Chem. 2014;2014:1–9. https://doi.org/10.1155/2014/438245.

    Article  CAS  Google Scholar 

  74. Ju, Okoli IE. Adsorption studies of heavy metals by low-cost adsorbents. J Appl Sci Environ Manag. 2014;18(3):443–8.

    Google Scholar 

  75. Sunil H, Karthik KV, Pradeep HN. Removal of chromium (VI) metal ions from waste water using alternative adsorbents -A comparative study. Int J Sci Res Publ. 2014;4(1):2250–3153 Available: www.ijsrp.org.

    Google Scholar 

  76. Mulani K, Daniels S, Rajdeo K, Tambe S, Chavan N. Adsorption of chromium(VI) from aqueous solutions by coffee polyphenol-formaldehyde/acetaldehyde resins. J Polym. 2013;2013:1–11. https://doi.org/10.1155/2013/798368.

    Article  Google Scholar 

  77. Kaur R, Singh J, Khare R, Cameotra SS, Ali A. Batch sorption dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and cu(II) from aqueous phase using agricultural residues. Appl Water Sci. 2013;3(1):207–18. https://doi.org/10.1007/s13201-012-0073-y.

    Article  CAS  Google Scholar 

  78. Gandhi N, Sirisha D, Sekhar KBC. Adsorption Studies of Chromium by Using Low Cost Adsorbents. Our Nat. 2013;11(1):11–6. https://doi.org/10.3126/on.v11i1.8238.

    Article  Google Scholar 

  79. Assadi A, Dehghani MH, Rastkari N, Nasseri S, Mahvi AH. Photocatalytic reduction of hexavalent chromium in aqueous solutions with zinc oxide nanoparticles and hydrogen peroxide. Environ Prot Eng. 2012;38(4):5–16. https://doi.org/10.5277/EPE120401.

    Article  CAS  Google Scholar 

  80. Idris S. Kinetic study of utilizing groundnut shell as an adsorbent in removing chromium and nickel from dye effluent. Am Chem Sci J. 2012;2(1):12–24. https://doi.org/10.9734/acsj/2012/908.

    Article  CAS  Google Scholar 

  81. Mahajan G, Sud D. Modified agricultural waste biomass with enhanced responsive properties for metal-ion remediation: a green approach. Appl Water Sci. 2012;2(4):299–308. https://doi.org/10.1007/s13201-012-0050-5.

    Article  CAS  Google Scholar 

  82. Saritha B, S. H. M. A, Dash AK. Adsorption Removal of Chromium ( Vi ) From Aqueous Solution Using Groundnut Shell. Int J Eng Trends Technol. 2011;2(Vi):6–9.

    Google Scholar 

  83. Attia AA, Khedr SA, Elkholy SA. Adsorption of chromium ion (VI) by acid activated carbon. Brazilian J Chem Eng. 2010;27(1):183–93. https://doi.org/10.1590/S0104-66322010000100016.

    Article  CAS  Google Scholar 

  84. Ekpete OA, Kpee F, Amadi JC, Rotimi RB. Adsorption of chromium(VI) and zinc(II) ions on the skin of Orange peels (Citrus sinensis). J Nepal Chem Soc. 1970;26(6):31–9. https://doi.org/10.3126/jncs.v26i0.3628.

    Article  CAS  Google Scholar 

  85. Giri G. Fixed bed column study for removal of chromium (VI) from aqueous solution by using saw dust (Gmelina arborea) a thesis submitted in partial fulfillment oF Department of Chemical Engineering National Institute of technology Rourkela National Institute: National Institute of Technology, Rourkela; 2009.

  86. Agarwal GS, Bhuptawat HK, Chaudhari S. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. Bioresour Technol. 2006;97(7):949–56. https://doi.org/10.1016/j.biortech.2005.04.030.

    Article  CAS  Google Scholar 

  87. Pinto G, de Mesquita LMS, Torem ML, Pinto GAS. Biosorption of heavy metals by powder of green coconut shell. Sep Sci Technol. 2006;41(14):3141–53. https://doi.org/10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  88. Sharma A, Bhattacharyya KG. Adsorption of chromium (VI) on azadirachta indica (Neem) leaf powder. Adsorption. 2005;10(4):327–38. https://doi.org/10.1007/-s10450-005-4818-x.

    Article  Google Scholar 

  89. Babu BV, Gupta S. Adsorption of Cr(VI) using activated neem leaves: kinetic studies. Adsorption. 2008;14(1):85–92. https://doi.org/10.1007/s10450-007-9057-x.

    Article  CAS  Google Scholar 

  90. Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chianelli RR, Rios J, et al. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (oat) biomass. J Hazard Mater. 2000;80(1–3):175–88. https://doi.org/10.1016/S0304-3894(00)00301-0.

    Article  CAS  Google Scholar 

  91. Garg VK, Gupta R, Kumar R, Gupta RK. Adsorption of chromium from aqueous solution on treated sawdust. Bioresour Technol. 2004;92(1):79–81. https://doi.org/10.1016/j.biortech.2003.07.004.

    Article  CAS  Google Scholar 

  92. Acar F, Malkoc E. The removal of chromium (VI) from aqueous solutions by Fagusorientalis. Bioresour Technol. 2004;94:13–5.

    Article  CAS  Google Scholar 

  93. Bishnoi NR, Bajaj M, Sharma N, Gupta A. Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresour Technol. 2004;91(3):305–7. https://doi.org/10.1016/S0960-8524(03)00204-9.

    Article  CAS  Google Scholar 

  94. Farajzadeh MA, Monji AB. Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol. 2004;38(3):197–207. https://doi.org/10.1016/j.seppur.2003.11.005.

    Article  CAS  Google Scholar 

  95. Mohan D, Singh K, Singh V. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater. 2006;B 135:280–95. https://doi.org/10.1016/j.jhazmat.2005.11.075.

    Article  CAS  Google Scholar 

  96. Venkateswarlu P, Ratnam MV, Rao DS, Rao MV. Removal of chromium from an aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. Int J Phys Sci. 2007;2(8):188–95. https://doi.org/10.1080/09593339409385448.

    Article  Google Scholar 

  97. Karthikeyan T, Rajgopal S, Miranda LR. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J Hazard Mater. 2005;124(1–3):192–9. https://doi.org/10.1016/j.jhazmat.2005.05.003.

    Article  CAS  Google Scholar 

  98. Montanher SF, Oliveira EA, Rollemberg MC. Removal of metal ions from aqueous solutions by sorption onto rice bran. J Hazard Mater. 2005;117(2–3):207–11. https://doi.org/10.1016/j.jhazmat.2004.09.015.

    Article  CAS  Google Scholar 

  99. Gupta V, Ali I. Removal of lead and chromium from wastewater using bagasse fly ash - a sugar industry waste. J Colloid Interface Sci. 2004;271(2):321–8. https://doi.org/10.1016/j.jcis.2003.11.007.

    Article  CAS  Google Scholar 

  100. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng. 1963;89(89):31–60.

    Article  Google Scholar 

  101. Olu-Owolabi BI, Diagboya PN, Adebowale KO. Evaluation of pyrene sorption-desorption on tropical soils. J Environ Manag. 2014;137:1–9. https://doi.org/10.1016/-j.jenvman.2014.01.048.

    Article  CAS  Google Scholar 

  102. Abood MM, Rajendiran J, Azhari NN. Agricultural waste as low-cost adsorbent for the removal of Fe (II) ions from aqueous solution. Infrastruct Univ Kuala Lumpur Res J. 2015;3(1):29–39.

    Google Scholar 

  103. Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc. 1916;38(11):2221–95.

    Article  CAS  Google Scholar 

  104. Chakravarty P, Sen Sarma N, Sarma HP. Biosorption of cadmium (II) from aqueous solution using heartwood powder of Areca catechu. Chem Eng J. 2010;162(3):949–55. https://doi.org/10.1016/j.cej.2010.06.048.

    Article  CAS  Google Scholar 

  105. Frendulich HMF. Over the adsorption in solution. J Phys Chem. 1906;57:385–470.

    Google Scholar 

  106. Zheng H, Wang Y, Zheng Y, Zhang H, Liang S, Long M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chem Eng J. 2008;143(1–3):117–23. https://doi.org/10.1016/j.cej.2007.12.022.

    Article  CAS  Google Scholar 

  107. Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR. Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater Chem Phys. 2003;78(3):800–7. https://doi.org/10.1016/S0254-0584(02)00390-5.

    Article  CAS  Google Scholar 

  108. Choy KKH, McKay G, Porter JF. Sorption of acid dyes from effluents using activated carbon. Resour Conserv Recy. 1999;27(1–2):57–71.

    Article  Google Scholar 

  109. Al-trawneh SA. Studies on adsorptive removal of some heavy metal ions by calix [ 4 ] Resorcine. Jordan J Earth Environ Sci Vol. 2015;7(1):1–9.

    Google Scholar 

  110. Liu Y. Some consideration on the Langmuir isotherm equation. Colloids Surfaces A Physicochem Eng Asp. 2006;274(1–3):34–6. https://doi.org/10.1016/j.colsurfa.2005.08.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Prof. Kenneth B. Pelig-Ba of the Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, C. K. Tedam University of Technology and Applied Sciences for his moral support during the conduct of this review research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Bayuo.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this review paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayuo, J. An extensive review on chromium (vi) removal using natural and agricultural wastes materials as alternative biosorbents. J Environ Health Sci Engineer 19, 1193–1207 (2021). https://doi.org/10.1007/s40201-021-00641-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00641-w

Keywords

Navigation