Skip to main content

Advertisement

Log in

Metal content in soils of Northern India and crop response: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The review paper, summaries the results of heavy metal concentration reported by several authors in the soils of North Indian states viz. Punjab, Haryana, Rajasthan and Uttar Pradesh, and crop response towards different heavy metal exposure. The metals which are included in this review study are mainly Fe, Mn, Zn, Ni, Cu, Co, Mo, V, Cr, Pb, Cd,, and As. Different essential and non-essential metals in soil pose different toxic effects on the plants if present in exceeded concentrations. The level of toxicity varies from crop to crop and from metal to metal. Also the physico-chemical parameters of soils viz., pH, CEC, texture and organic matter influence the uptake of metals. Studies reveal that although the soils of North India are highly productive in nature, but the concentration of some heavy metals was found crossing the permissible limits at different locations. The cause of heavy metal contamination in different regions of North India is anthropogenic which includes the discharge of sewage sludge, fly ash, untreated industrial waste disposal on agricultural land, extensive use of agrochemicals, fertilizer, pesticides used in the agriculture processes. As the soils of Northern India are highly fertile and are in a threat of contamination, a detailed literature survey has been carried out to assess the contamination level and crop response to bring the attention of regulatory bodies and policy makers to take possible measures to prevent further contamination of the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwala SC, Chatterjee C, Sharma PN, Sharma CP, Nautiyal N (1979) Pollen development in maize plants subjected to molybdenum deficiency. Canad J Bot 57:1946–1950

    Article  CAS  Google Scholar 

  • Ahirwar NK, Gupta G, Singh R, Singh V (2018) Assessment of present heavy metals in industrial affected soil area of Mandideep, Madhya Pradesh, India. Int J Curr Microbiol App Sci 7(1):3572–3582

    Article  Google Scholar 

  • Ahmad MSA, Hussain M, Saddiq R, Alvi AK (2007)

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45(1):139–142

    Article  Google Scholar 

  • Alcántara E, Romera FJ, Cañete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45(12):1893–1898

    Article  Google Scholar 

  • Ali J, Khan S, Khan A, Waqas M, Nasir MJ (2020) Contamination of soil with potentially toxic metals and their bioaccumulation in wheat and associated health risk. Environ Monit Assess 192:1–12

    Article  Google Scholar 

  • Allaway WH (1968) Agronomic controls over the environmental cycling of trace elements. Advances in agronomy, vol 20. Academic Press, New York, pp 235–274

    Google Scholar 

  • Alva AK (1993) Copper contamination of sandy soils and effects on young Hamlin orange trees. Bull Environ Contam Toxicol 51(6):857–864

    Article  CAS  Google Scholar 

  • Ambler JE, Brown JC, Gauch HG (1970) Effect of zinc on translocation of iron in soybean plants. Plant Physiol 46(2):320–323

    Article  CAS  Google Scholar 

  • Anderson AJ, Meyer DR, Mayer FK (1973) Heavy metal toxicities: levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Aust J Agric Res 24(4):557–571

    Article  CAS  Google Scholar 

  • Andiyappan K, Alagarsamy VAV, Abubacker TA (2017) Contemporary status of heavy metal contamination in soils affected by tannery activities, Ranipet, south India. Orient J Chem 33(6):3092

    Article  CAS  Google Scholar 

  • Anke M, Glei M, Groppel B, Rother C, Gonzales D (1998) Mengen-, Spuren- und Ultraspurenelemente in der Nahrungskette. Nova Acta Leopold 79:57–190

    Google Scholar 

  • Antoine JM, Fung LAH, Grant CN, Dennis HT, Lalor GC (2012) Dietary intake of minerals and trace elements in rice on the Jamaican market. J Food Comp Anal 26(1–2):111–121

    Article  CAS  Google Scholar 

  • Arnon DI, Stout PR (1939) Molybdenum as an essential element for higher plants. Plant Physiol 14:599–602

    Article  CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci, 1227–1238.

  • Asdeo A (2014) Toxic metal contamination of staple crops (wheat and millet) in peri-urban area of Western Rajasthan. Int Ref J Eng Sci 3(4):8–18

    Google Scholar 

  • Ata S, Tayyab S, Rasool A (2013) Analysis of non-volatile toxic heavy metals (Cd, Pb, Cu, Cr and Zn) in Allium sativum (garlic) and soil samples, collected from different locations of Punjab, Pakistan by atomic absorption spectroscopy. In: E3S Web of conferences, Vol 1. EDP Sciences, p 16004

  • ATSDR (2007) Toxicological profile for arsenic. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta.

  • Audebert A (2006) Iron partitioning as a mechanism for iron toxicity tolerance in lowland rice. In: Audebert A, Narteh LT, Kiepe P, Millar D, Beks B (eds) Iron toxicity in rice-based systems in West Africa, Africa Rice Center (WARDA), Print Right, Ghana. pp 34–46.

  • Awashthi, SK (2000) Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi.

  • Ayers RS, Westcot DW (1994) Water quality for agriculture, FAO Irrigation and Drainage Paper, 29 Rev. 1, Food and Agriculture Organization of the United Nations Rome, 1985, Reprinted 1989, 1994, ISBN 92-5-102263-1

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2009) Uncommon heavy metals, metalloids and their plant toxicity: a review. Organic farming, pest control and remediation of soil pollutants. Springer, Dordrecht, pp 275–317

    Chapter  Google Scholar 

  • Bachman GR, Miller WB (1995) Iron chelate inducible iron/manganese toxicity in zonal geranium. J Plant Nutrit 18(9):1917–1929

    Article  CAS  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140(2):433–443

    Article  CAS  Google Scholar 

  • Baker AJM (1978) Ecophysiological aspects of zinc tolerance in Silene maritima with. New Phytol 80(3):635–642

    Article  CAS  Google Scholar 

  • Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot F, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 231(1–4):350–356

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30(1):57–64

    Article  CAS  Google Scholar 

  • Barceló JUAN, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutrit 13(1):1–37

    Article  Google Scholar 

  • Barceló J, Poschenrieder C, Gunsé B (1986) Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water stress conditions. J Exp Bot 37(2):178–187

    Article  Google Scholar 

  • Barker WG (1972) Toxicity levels of mercury, lead, copper, and zinc in tissue culture systems of cauliflower, lettuce, potato, and carrot. Canad J Bot 50(5):973–976

    Article  CAS  Google Scholar 

  • Baruah KK, Nath BC (1996) Changes in growth, ion uptake and metabolism of rice (Oryza sativa L.) seedlings at excess iron in growth medium. Indian J Plant Physiol 1(2):122–125

    Google Scholar 

  • Baruah KK, Das S, Das K (2007) Physiological disorder of rice associated with high levels of iron in growth medium. J Plant Nutrit 30(11):1871–1883

    Article  CAS  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutrit Soil Sci 168(4):558–573

    Article  CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301(1–3):251–261

    Article  CAS  Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173(1):643–652

    Article  CAS  Google Scholar 

  • Bhalerao SA, Sharma AS, Poojari AC (2015) Toxicity of nickel in plants. Int J Pure Appl Biosci 3(2):345–355

    Google Scholar 

  • Bhardwaj R, Arora N, Sharma P, Arora HK (2007) Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J Plant Sci 6(5):765–772

    Article  CAS  Google Scholar 

  • Bhargava P, Dutta S (2014) Impact of explosive industry effluents on soil quality parameters and heavy metal load-A study of RECL (Rajasthan Explosive and Chemical Limited) Dholpur, Rajasthan, India. Int Res J Environ Sci 3(11):32–35

    Google Scholar 

  • Bhatti SS, Kumar V, Singh N, Sambyal V, Singh J, Katnoria JK, Nagpal AK (2016a) Physico-chemical properties and heavy metal contents of soils and kharif crops of Punjab, India. Proc Environ Sci 35:801–808

    Article  CAS  Google Scholar 

  • Bhatti SS, Sambyal V, Nagpal AK (2016b) Heavy metals bioaccumulation in Berseem (Trifolium alexandrinum) cultivated in areas under intensive agriculture, Punjab, India. Springerplus 5(1):173

    Article  Google Scholar 

  • Bhuiyan MAH, Karmaker SC, Bodrud-Doza M, Rakib MA, Saha BB (2021) Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM. PMF and GIS Methods. Chemosphere 263:128339

    Google Scholar 

  • Biacs PA, Daood HG, Kadar I (1995) Effect of Mo, Se, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrot. J Agric Food Chem 43(3):589–591

    Article  CAS  Google Scholar 

  • Bingham FT, Page AL, Mahler RJ, Ganje TJ (1975) Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge. J Environ Qual 4(2):207–211

    Article  CAS  Google Scholar 

  • Bingham FT, Page AL, Mahler RJ, Ganje TJ (1976) Yield and cadmium accumulation of forage species in relation to cadmium content of sludge-amended soil. J Environ Qual 5(1):57–60

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator. Alyssum Bertolonii. New Phytol 156(2):205–215

    Article  CAS  Google Scholar 

  • Bortels H (1930) Molybdenum as a catalyst in biological nitrogen fixation. Arch for Microbiol 1:333–342

    CAS  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, El Ferjani E (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73(6):1304–1308

    Article  CAS  Google Scholar 

  • Bradshaw AD, McNeilly T (1981) Evolution and pollution. Edward Arnold, London

    Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. Marschner’s mineral nutrition of higher plants. Academic Press, New York, pp 191–248

    Chapter  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85(3):801–803

    Article  CAS  Google Scholar 

  • Cakmak I (2000) Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146(2):185–205

    Article  CAS  Google Scholar 

  • Cao H, Chen J, Zhang J, Zhang H, Qiao L, Men Y (2010) Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. J Environ Sci 22(11):1792–1799

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Aarabi MA, DeLaune RD, Gambrell RP, Patrick WH (1998) The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil 198(1):33–43

    Article  CAS  Google Scholar 

  • Cempel M, Nikel GJPJS (2006) Nickel: A review of its sources and environmental toxicology. Polish J Environ Stud 15(3):375–382

    CAS  Google Scholar 

  • Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Saf 87:57–64

    Article  CAS  Google Scholar 

  • Chabukdhara M, Munjal A, Nema AK, Gupta SK, Kaushal RK (2016) Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum Ecol Risk Assess Int J 22(3):736–752

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45(11):1681–1693

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162(2–3):1514–1521

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109(1):69–74

    Article  CAS  Google Scholar 

  • Chatterjee C, Nautiyal N (2001) Molybdenum stress affects viability and vigour of wheat seeds. J Plant Nutrit 24:1377–1386

    Article  CAS  Google Scholar 

  • Chauhan A, Choudhari R, Kumar A, Singh B, Tripathi A (2021) Effect of heavy metals caused by E-waste activities on soil samples, PM 2.5, human fingernails, and scalp hair in Moradabad City, India. J Ecophysiol Occup Health 21(3):96–104

    Article  CAS  Google Scholar 

  • Cheng Z, Lee L, Dayan S, Grinshtein M, Shaw R (2011) Speciation of heavy metals in garden soils: evidences from selective and sequential chemical leaching. J Soils Sedim 11(4):628–638

    Article  CAS  Google Scholar 

  • Clairmont KB, Hagar WG, Davis EA (1986) Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiol 80(1):291–293

    Article  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7(1):31–40

    Article  CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem (paris) 32(4):561–570

    CAS  Google Scholar 

  • Crans D, Amin S, Keramidas A (1998) Chemistry of relevance to vanadium in the environment. In: Nriagu J (ed) Vanadium in the environment. Part 1: Chemistry and biochemistry. Wiley, New York, pp 73–96

    Google Scholar 

  • Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902

    Article  CAS  Google Scholar 

  • Crawford TW, Stroehlein JL, Kuehl RO (1989) Manganese and rates of growth and mineral accumulation in cucumber. J Am Soc Horticult Sci (USA).

  • Dantu S (2009) Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India. Environ Monit Assess 149(1):213–222

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98(1):29–36

    Article  CAS  Google Scholar 

  • Daulta R, Rani J, Yadav A (2014) Effect of sugar mill effluent on physico-chemical properties of soil at Panipat city, India. Int Arch Appl Sci Technol 5(2):06–12

    CAS  Google Scholar 

  • Daulta R, Singh B, Kataria N, Garg VK (2018) Assessment of uranium concentration in the drinking water and associated health risks in Eastern Haryana, India. Hum Ecol Risk Assess Int J 24(4):1115–1126

    Article  CAS  Google Scholar 

  • Daulta R, Garg VK, Singh B (2019) Natural radioactivity in soil, associated radiation exposure and cancer risk to population of Eastern Haryana, India. J Geol Soc India 94(5):525–532

    Article  CAS  Google Scholar 

  • Daulta R, Sridevi T, Garg VK (2020) Spatial distribution of heavy metals in rice grains, rice husk, and arable soil, their bioaccumulation and associated health risks in Haryana, India. Toxin Rev 1–13.

  • Davis-Carter JG, Shuman LM (1993) Influence of texture and pH of kaolinitic soils on zinc fractions and zinc uptake by peanuts. Soil Sci 155(6):376–384

    Article  CAS  Google Scholar 

  • De Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutrit 28(1):1–20

    Article  Google Scholar 

  • Dhankhar R, Sainger PA, Sainger M (2012) Phytoextraction of zinc: physiological and molecular mechanism. Soil Sedim Contam 21:115–133

    Article  CAS  Google Scholar 

  • Dheri GS, Brar MS, Malhi SS (2007) Heavy-metal concentration of sewage-contaminated water and its impact on underground water, soil, and crop plants in alluvial soils of northwestern India. Commun Soil Sci Plant Anal 38(9–10):1353–1370

    Article  CAS  Google Scholar 

  • Dietz KJ, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 73–97

    Chapter  Google Scholar 

  • Duan X-C, Yu H-H, Ye T-R, Huang Y, Li J, Yuan G-L, Albanese S (2020) Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top-and sub-soils: a case of suburban area in Beijing. China. Ecol Indic 112:106085

    Article  CAS  Google Scholar 

  • Dutta S, Sisodia A (2014) Accumulation of some heavy metals in roadside soil along the national highway-8 in Rajasthan (India). Nat Environ Pollut Technol 13(4):847

    CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781

    Article  CAS  Google Scholar 

  • Edogbo B, Okolocha E, Maikai B, Aluwong T, Uchendu C (2020) Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State. Nigeria. Sci Afr 7:e00281

    Google Scholar 

  • Ekere NR, Ugbor MCJ, Ihedioha JN, Ukwueze NN, Abugu HO (2020) Ecological and potential health risk assessment of heavy metals in soils and food crops grown in abandoned urban open waste dumpsite. J Environ Health Sci Eng 18:711–721

    Article  CAS  Google Scholar 

  • Ewers U (1991a) Standards, guidelines and legislative regulations concerning metals and their compounds. In: Merian E (ed) Metals and their compounds in the environment: occurrence, analysis and biological relevance. VCH, Weinheim, pp 458–468

    Google Scholar 

  • Ewers U (1991b) Standards, guidelines and legislative regulations concerning metals and their compounds. Metals Comp Environ 760–710.

  • FAO/WHO (1984) List of contaminants and their maximum levels in foods. CAC/Vol XVII (edn 1). Geneva, Switzerland: WHO.

  • FAO/WHO (2001a) Food additives and contaminants. Codex Alimentarius Commission. Joint FAO/WHO Food Standards Program, ALI-NORM 01/12A, pp 1–289.

  • Fei X, Lou Z, Xiao R, Ren Z, Lv X (2020) Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci Total Environ 747:141293

    Article  CAS  Google Scholar 

  • Fontes RLF, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutrit 21(8):1723–1730

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45(1):91–97

    Article  CAS  Google Scholar 

  • Foy CD, Weil RR, Coradetti CA (1995) Differential manganese tolerances of cotton genotypes in nutrient solution. J Plant Nutrit 18(4):685–706

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2008) Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation. Plant Growth Regul 54(2):179–188

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M, Słaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659

    Article  CAS  Google Scholar 

  • Garcíia I, Diez M, Martíin F, Simóon M, Dorronsoro C (2009) Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil. Pedosphere 19(2):166–175

    Article  Google Scholar 

  • Garg A (2016) Level of Cd in different types of soil of Rohtak district and its bioremediation. J Environ Chem Eng 4(4):3797–3802

    Article  Google Scholar 

  • Gebeyehu HR, Bayissa LD (2020) Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 15(1):e0227883

    Article  CAS  Google Scholar 

  • Gharbi F, Rejeb S, Ghorbal MH, Morel JL (2005) Plant response to copper toxicity as affected by plant species and soil type. J Plant Nutrit 28(3):379–392

    Article  CAS  Google Scholar 

  • Ghosh AK, Bhatt MA, Agrawal HP (2012) Effect of long-term application of treated sewage water on heavy metal accumulation in vegetables grown in Northern India. Environ Monit Assess 184(2):1025–1036

    Article  CAS  Google Scholar 

  • Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Piceaabies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut 38(4):375–381

    Article  CAS  Google Scholar 

  • Golovatyj SE, Bogatyreva EN (1999) Effect of levels of chromium content in a soil on its distribution in organs of corn plants. Soil Res Fert 197–204.

  • Golui D, Datta SP, Dwivedi BS, Meena MC, Ray P, Trivedi VK (2021) A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environ Earth Sci 80(19).

  • Gopal R, Dube BK, Sinha P, Chatterjee C (2003) Cobalt toxicity effects on growth and metabolism of tomato. Commun Soil Sci Plant Anal 34(5–6):619–628

    Article  CAS  Google Scholar 

  • Govil PK, Sorlie JE, Murthy NN, Sujatha D, Reddy GLN, Rudolph-Lund K et al (2008) Soil contamination of heavy metals in the Katedan industrial development area, Hyderabad, India. Environ Monit Assess 140(1):313–323

    Article  CAS  Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174(1–3):113–121

    Article  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161(3):481–488

    Article  CAS  Google Scholar 

  • Gupta UC, MacKay DC (1968) Crop responses to applied molybdenum and copper on podzol soils. Canad J Soil Sci 48(3):235–242

    Article  CAS  Google Scholar 

  • Gupta N, Yadav KK, Kumar V, Krishnan S, Kumar S, Nejad ZD et al (2021) Evaluating heavy metals contamination in soil and vegetables in the region of North India: levels, transfer and potential human health risk analysis. Environ Toxicol Pharmacol 82:103563

    Article  CAS  Google Scholar 

  • Haghiri F (1973) Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperature. J Environ Qual 2:93–96

    Article  CAS  Google Scholar 

  • Haryana Statistical Abstract 2018–19.pdf. http://esaharyana.gov.in/Portals/0/Compilation/State%20Statistical%20Abstract/Abstract%202018-19.pdf.

  • European Union (2002) Heavy metals in waste, European Commission on environment. http://www.ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf

  • Hermle S, Vollenweider P, Günthardt-Goerg MS, McQuattie CJ, Matyssek R (2007) Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol 27(11):1517–1531

    Article  CAS  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutrit 19(12):1581–1598

    Article  CAS  Google Scholar 

  • Hewitt EJ (1953) Metal interrelationships in plant nutrition: I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and marrowstem kale grown in sand culture. J Exp Bot 4(1):59–64

    Article  CAS  Google Scholar 

  • Hinesly TD, Redborg KE, Pietz RI, Ziegler EL (1984) Cadmium and zinc uptake by corn (Zea mays L.) with repeated applications of sewage sludge. J Agric Food Chem 32(1):155–163

    Article  CAS  Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxictty and tolerance of plants VII. Effect of light intensity on manganese-induced chlorosis. J Plant Nutrit 11(3):235–246

    Article  CAS  Google Scholar 

  • Hu Y, Liu X, Bai J, Shih K, Zeng EY, Cheng H (2013) Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Pollut Res 20(9):6150–6159

    Article  CAS  Google Scholar 

  • Huang CY, Bazzaz FA, Vanderhoef LN (1974) The inhibition of soybean metabolism by cadmium and lead. Plant Physiol 54(1):122–124

    Article  CAS  Google Scholar 

  • Huang J, Wu Y, Sun J, Li X, Geng X, Zhao M, Sun T, Fan Z (2021) Health risk assessment of heavy metal (loid) s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model. J Hazard Mater 415:125629

    Article  CAS  Google Scholar 

  • Imai A, Fukushima T, Matsushige K, Kim YH, Choi K (2002) Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res 36(4):859–870

    Article  CAS  Google Scholar 

  • Imtiaz M, Mushtaq MA, Nawaz MA, Ashraf M, Rizwan MS, Mehmood S et al (2018) Physiological and anthocyanin biosynthesis genes response induced by vanadium stress in mustard genotypes with distinct photosynthetic activity. Environ Toxicol Pharmacol 62:20–29

    Article  CAS  Google Scholar 

  • IS: 11624 (1986) Guidelines for quality of irrigation water, Bureau of Indian Standards, New Delhi

  • Jain R, Srivastava S, Madan VK, Jain R (2000) Influence of chromium on growth and cell division of sugarcane. Ind J Plant Physiol 5(3):228–231

    CAS  Google Scholar 

  • Jain D, Kour R, Bhojiya AA, Meena RH, Singh A, Mohanty SR et al (2020) Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci Rep 10(1):1–13

    Article  CAS  Google Scholar 

  • Jaishree TI (2016) Health risk assessment due to heavy metals in cow pea cultivated in Sanganer using textile waste water. Int J Sci Res 5(1):791–796

    Google Scholar 

  • Jaishreeand TIK (2015) Assessment of heavy metals’ risk on human health via dietary intake of cereals and vegetables from effluent irrigated land Jaipur District. Rajasthan 7:5142–5148. https://doi.org/10.15680/IJIRSET.2015.0407014

    Article  Google Scholar 

  • Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML (2008) Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci 105(30):10619–10624

    Article  CAS  Google Scholar 

  • Jhamaria C, Bhatnagar M, Naga JP (2015) Accumulation of heavy metals in soil and vegetables due to wastewater irrigation in a semiarid region of Rajasthan, India. Int J Environ Ecol Fam Urban Stud (IJEFUS) 5(5):1–10

    Google Scholar 

  • Jiang HH, Cai LM, Wen HH, Hu GC, Chen LG, Luo J (2020a) An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci Total Environ 701:134466

    Article  CAS  Google Scholar 

  • Jiang Y, Ma J, Ruan X, Chen X (2020b) Compound health risk assessment of cumulative heavy metal exposure: a case study of a village near a battery factory in Henan Province, China. Environ Sci Process Impacts 22(6):1408–1422

    Article  CAS  Google Scholar 

  • Joseph GW, Merrilee RA, Raymond E (1995) Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. The symposium on environmental toxicology and risk assessment, Atlanta, GA, USA, 26–29.

  • Juwarkar AS, Shende GB (1988) Interaction of cadmium, lead: effect on growth, yield and content of Cd, Pb in Barley, Hordeum Vulgare. Indian J Environ Health 28(3):235–243

    Google Scholar 

  • Kabata-pendias A (2011) Trace elements in soils and plants. CRC Press, London

    Google Scholar 

  • Karki D (2020) Pollution assessment of heavy metals in groundwater and agricultural soil in tailing of Zawar mines, Udaipur, Rajasthan. EQA-Int J Environ Qual 38(3):37–47

    Google Scholar 

  • Katnoria JK, Arora S, Bhardwaj R, Nagpal A (2011) Evaluation of genotoxic potential of industrial waste contaminated soil extracts of Amritsar, Indai. J Environ Biol 32(3):363

    CAS  Google Scholar 

  • Kaur M, Soodan RK, Katnoria JK, Bhardwaj R, Pakade YB, Nagpal AK (2014) Analysis of physico-chemical parameters, genotoxicity and oxidative stress inducing potential of soils of some agricultural fields under rice cultivation. Trop Plant Res 1(3):49–61

    Google Scholar 

  • Kaur J, Bhatti SS, Bhat SA, Nagpal AK, Kaur V, Katnoria JK (2021) Evaluating potential ecological risks of heavy metals of textile effluents and soil samples in vicinity of textile industries. Soil Syst 5(4):63

    Article  CAS  Google Scholar 

  • Khan S, Khan NN (1983) Influence of lead and cadmium on the growth and nutrient concentration of tomato (Lycopersicum esculentum) and egg-plant (Solanum melongena). Plant Soil 74:387–394

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):686–692

    Article  CAS  Google Scholar 

  • Khurana MPS, Bansal RL (2008) Impact of sewage irrigation on speciation of nickel in soils and its accumulation in crops of industrial towns of Punjab. J Environ Biol 29(5):793–798

    CAS  Google Scholar 

  • Kim KW, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environ Int 35(3):453–454

    Article  Google Scholar 

  • Kitao M, Lei TT, Koike T (1997) Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environ Pollut 97(1–2):113–118

    Article  CAS  Google Scholar 

  • Kori R, Saxena A, Wankhade H, Baig A, Kulshreshtha A, Mishra S, Sen S (2020) Heavy metal contamination in soil of industrial area, Dewas, Madhya Pradesh, India. ISSN:[2454–1850] [Vol-6, Issue-11].

  • Kormoker T, Proshad R, Islam MS, Shamsuzzoha M, Akter A, Tusher TR (2020a) Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Rev 1–14.

  • Kormoker T, Proshad R, Islam MS, Tusher TR, Uddin M, Khadka S, Chandra K, Sayeed A (2020b) Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. Int J Environ Health Res 1–21.

  • Krishna AK, Govil PK (2004) Heavy metal contamination of soil around Pali industrial area, Rajasthan, Indai. Environ Geol 47(1):38–44

    Article  CAS  Google Scholar 

  • Krishna AK, Govil PK (2007) Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ Monit Assess 124(1):263–275

    Article  CAS  Google Scholar 

  • Krishnamurti GS, Megharaj M, Naidu R (2004) Bioavailability of cadmium−organic complexes to soil alga an exception to the free ion model. J Agric Food Chem 52(12):3894–3899

    Article  CAS  Google Scholar 

  • Kuboi T, Noguchi A, Yazaki J (1986) Family-dependent cadmium accumulation characteristics in higher plants. Plant Soil 92(3):405–415

    Article  CAS  Google Scholar 

  • Kubota J, Cary EE (1983) Cobalt, molybdenum, and selenium. Methods Soil Anal 2 Chem Microbiol Prop 9:485–500

    Google Scholar 

  • Kumar G, Singh RP (1993) Nitrate assimilation and biomass production in Sesamum indicuml. Seedlings in a lead enriched environment. Water Air Soil Pollut 66(1–2):163–171

    Article  CAS  Google Scholar 

  • Kumar N, Bauddh K, Kumar S, Dwivedi N, Singh DP, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495

    Article  Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016a) Heavy metal and their regulation in plant system: an overview. Plant responses to xenobiotics. Springer, Singapore, pp 19–38

    Chapter  Google Scholar 

  • Kumar R, Mishra RK, Mishra V, Qidwai A, Pandey A, Shukla SK, Dikshit A (2016b) Detoxification and tolerance of heavy metals in plants. Plant metal interaction. Elsevier, Hoboken, pp 335–359

    Chapter  Google Scholar 

  • Kumar V, Chauhan RK, Srivastava S, Singh J, Kumar P (2018) Contamination, enrichment and translocation of heavy metals in certain leafy vegetables grown in composite effluent irrigated soil. Arch Agric Environ Sci 3(3):252–260

    Article  Google Scholar 

  • Kumawat SR, Yadav BL, Majumdar SP (2014) Effect of municipal sewage on build up of heavy metals in vegetables in the vicinity of Jaipur city of eastern Rajasthan. Environ Ecol 32(4B):1673–1676

    Google Scholar 

  • Ladwani KD, Ladwani KD, Manik VS, Ramteke DS (2012) Assessment of heavy metal contaminated soil near coal mining area in Gujarat by toxicity characteristics leaching procedure. Int J Life Sci Biotechnol Pharma Res 1(4):73–80

    CAS  Google Scholar 

  • Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546

    Article  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51(3):277–291

    Article  CAS  Google Scholar 

  • Li Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15(3):187–192

    Article  Google Scholar 

  • Li Y, Gou X, Wang G, Zhang Q, Su Q, Xiao G (2008) Heavy metal contamination and source in arid agricultural soils in central Gansu Province, China. J Environ Sci 20:607–612

    Article  CAS  Google Scholar 

  • Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75(7):979–986

    Article  CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61(2):293–301

    Article  CAS  Google Scholar 

  • Llobet JM, Domingo JL (1984) Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23:227–231

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2001) Modeling zinc toxicity for terrestrial invertebrates. Environ Toxicol Chem 20:1901–1908

    Article  CAS  Google Scholar 

  • Lock K, De Schamphelaere KAC, Becaus S, Criel P, Van Eeckhout H, Janssen CR (2007) Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare). Environ Pollut 147(3):626–633

    Article  CAS  Google Scholar 

  • Loneragan JF (1988) Distribution and movement of manganese in plants. Manganese in soils and plants. Springer, Dordrecht, pp 113–124

    Chapter  Google Scholar 

  • Ma J, Guo H, Lei M, Zhou X, Li F, Yu T, Wu Y (2015) Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals. Water Air Soil Pollut 226(8):260

    Article  Google Scholar 

  • Małuszynski MJ (2007) Vanadium in environment. OchronaSrodowiskaiZasobówNaturalnych. Ochr’ Sr Zasobów Nat 31:475–478

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mathys W (1975) Enzymes of heavy metal-resistant and nonresistant populations of Silene cucubalus and their interactions with some heavy metals in vitro and in vivo. Physiol Plant 33:161–165

    Article  CAS  Google Scholar 

  • McBride MB (2001) Cupric ion activity in peat soil as a toxicity indicator for maize. J Environ Qual 30:78–84

    Article  CAS  Google Scholar 

  • McBride MB, Richards BK, Steenhuis T, Russo JJ, Sauve S (1997) Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application. Soil Sci 162:487–500

    Article  CAS  Google Scholar 

  • Medina A, Vassilev N, Barea JM, Azcón R (2005) Application of Aspergillus niger-treated agrowaste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cdcontaminated soil. J Biotechnol 116:369–378

    Article  CAS  Google Scholar 

  • Meharg AA (2004) Arsenic in rice-understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    Article  CAS  Google Scholar 

  • Mikkonen A, Tummavuori J (1994) Retention of vanadium (V) by three Finnish mineral soils. Eur J Soil Sci 45:361–368

    Article  CAS  Google Scholar 

  • Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutrit 10(4):470–481

    Article  Google Scholar 

  • Miller RJ, Bittell JE, Koeppe DE (1973) The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant 28(1):166–171

    Article  CAS  Google Scholar 

  • Misra SG, Mani D (1991) Heavy metals pollutant. In: Soil pollution. Ashish Publishing House, New Delhi, p 60

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Comm Soil Sci Plant Anal 33(11):1917–1926

    Article  CAS  Google Scholar 

  • Mohanty B, Das A, Mandal R, Banerji U, Acharyya S (2021) Heavy metals in soils and vegetation from wastewater irrigated croplands near Ahmedabad, Gujarat: risk to human health. Nat Environ Pollut Technol 20(1):163–175

    Article  CAS  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni II complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Moncada A, Miceli A, Sabatino L, Iapichino G, D’Anna F, Vetrano F (2018) Effect of molybdenum rate on yield and quality of lettuce, escarole, and curly endive grown in a floating system. Agronomy 8:171

    Article  CAS  Google Scholar 

  • Monteiro M, Santos C, Mann RM, Soares AM, Lopes T (2007) Evaluation of cadmium genotoxicity in Lactuca sativa L. using nuclear microsatellites. Environ Exp Bot 60(3):421–427

    Article  CAS  Google Scholar 

  • Moral R, Palacios G, Gómez I, Navarro-Pedreno J, Mataix J (1994) Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Fresenius Environ Bull 3:395–399

    CAS  Google Scholar 

  • Moreno JL, Hernandez T, Garcia C (1999) Effects of a cadmium-containing sewage sludge compost on dynamics of organic matter and microbial activity in an arid soils. Biol Fert Soils 28:230–237

    Article  CAS  Google Scholar 

  • Mukherji S, Maitra P (1976) Toxic effects of lead on growth and metabolism of germinating rice (Oryza sativa L.) seeds and on mitosis of onion (Allium cepa L.) root tip cells. Indian J Exp Biol

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    Article  CAS  Google Scholar 

  • Mungbean: a nickel indicator, accumulator or excluder? Bull Environ Contam Toxicol, 78(5), 319–324.

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43(2):203–213

    Article  CAS  Google Scholar 

  • Nechay BR, Nanning LB, Nechay PSE, Post RL, Branthan JJ, Macara IG, Kubena LF, Philip TD, Nielsen FH (1986) Role of vanadium in biology. Fred Proc 45:123–132

    Google Scholar 

  • Neelima P, Reddy KJ (2002) Interaction of copper and cadmium with seedling growth and biochemical responses in Solanum melongena. Nat Environ Pollut Technol 1(3):285–290

    CAS  Google Scholar 

  • Nieminen TM, Ukonmaanaho L, Rausch N, Shotyk W (2007) Biogeochemistry of nickel and its release into the environment. Met Ions Life Sci 2:1–30

    CAS  Google Scholar 

  • Niess DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotech 51:730–750

    Article  Google Scholar 

  • Nikolic VR (2006) Handbook of plant nutrition. CRC, Press Taylor & Francis Group, New York

  • O’Neill (1995) Arsenic. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 105–121

  • Obayomi O, Seyoum MM, Ghazaryan L, Tebbe CC, Murase J, Bernstein N, Gillor O (2021) Soil texture and properties rather than irrigation water type shape the diversity and composition of soil microbial communities. Appl Soil Ecol 161:103834

    Article  Google Scholar 

  • Olaleye AO, Ogunkunle AO, Singh BN, Akinbola GE, Tabi FO, Fayinminu OM, Iji E (2009) Ratios of nutrients in lowland rice grown on two iron toxic soils in Nigeria. J Plant Nutrit 32:1–17

    Article  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012.

  • Pal J, Bishnoi M, Kaur M (2017) Heavy metals in soil and vegetables and their effect on health. Int J Eng Sci Technol 2(1):17–27. https://doi.org/10.29121/IJOEST.v2.i1.2017.03

    Article  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Parr PD, Taylor FG (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7(3):197–202

    Article  CAS  Google Scholar 

  • Pedreno NJI, Gomez R, Moral G, Palacios J, Mataix J (1997) Heavy metals and plant nutrition and development. Recent Res Dev Phytochem 1:173–179

    Google Scholar 

  • Peralta JR, Gardea Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ ContamToxicol 66(6):727–734

    CAS  Google Scholar 

  • Połedniok J, Buhl F (2003) Speciation of vanadium in soil. Talanta 59:1–8

    Article  Google Scholar 

  • Poschenrieder C, Gunsé B, Barceló J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    Article  CAS  Google Scholar 

  • Price AH, Hendry GAF (1991) Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14(5):477–484

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutrit 28(3):393–404

    Article  CAS  Google Scholar 

  • Rahman A, Mondal NC, Tiwari KK (2021) Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India. Sci Rep 11(1):1–13

    Article  Google Scholar 

  • Rana MS, Hu CX, Shaaban M, Imran M, Afzal J, Moussa MG et al (2020) Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. J Environ Manag 268:110610

    Article  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajnuscajan(L.)Millspaugh) inresponsetoZnand Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Ray P, Datta SP, Dwivedi BS (2017) Long-term irrigation with zinc smelter effluent affects important soil properties and heavy metal content in food crops and soil in Rajasthan, India. Soil Sci Plant Nutrit 63(6):628–637

    Article  CAS  Google Scholar 

  • Rodríguez-Celma J, Rellán-Álvarez R, Abadía A, Abadía J, López-Millán AF (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteom 73(9):1694–1706

    Article  Google Scholar 

  • Rousos PA, Harisson HC, Stefen KL (1989) Physiological responses ofcabbagetoincipientcoppertoxicity. J Am Soc Horticult Sci 114:149–152

    Article  CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Article  Google Scholar 

  • Rout GR, Samantaray S, Das P (1997) Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J Plant Nutrit 20(4–5):473–483

    Article  CAS  Google Scholar 

  • Sahrawat KL (2010) Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition. Global Science Books, PlantStress

    Google Scholar 

  • Sainger PA, Dhankhar R, Sainger M, Kaushik A, Singh RP (2011) Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicol Environ Saf 74(8):2284–2291

    Article  CAS  Google Scholar 

  • Sakamoto T, Bryant DA (2001) Requirement of nickel as an essential micronutrient for the utilization of urea in the marine cyanobacterium Synechococcus sp. PCC 7002. Microbes Environ 16:177–184

    Article  Google Scholar 

  • Samantaray S, Rout GR, Das P (1997) Tolerance of rice to nickel in nutrient solution. Biol Plant 40:295–298

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gmez M (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  CAS  Google Scholar 

  • Sarma H, Islam NF, Borgohain P, Sarma A, Prasad MNV (2016) Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, north-east India: implications for the bio-economy. Emerg Contam 2(3):119–127

    Article  Google Scholar 

  • Satpathy D, Reddy MV, Dhal SP (2014) Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L) at the East Coast of India. BioMed Res Int 2014.

  • Satyanarayana GV, Reddy TB, Vemuri RS, Rao KS, Karnena MK (2021) A study on development of pollution index models and multivariate statistical analysis for heavy metals in the soils of APIIC, Visakhapatnam. Nat Environ Pollut Technol 20(1):251–257

    Article  CAS  Google Scholar 

  • Savage W, Berry WL, Reed CA (1981) Effect of trace element stress on the morphology of developing seeds of lettuce (Lactucastiva L Grand Rapids) as shown by scanning electron microscopy. J Plant Nutr 3:129–138

    Article  CAS  Google Scholar 

  • SEPA (1995) Environmental quality standards for soils. State Environmental Protection Administration, China, GB 15618–1995.

  • SEPA (2005) The limits of pollutants in food. State Environmental Protection Administration, China, GB 2762–2005.

  • Seregin IV, Kozhevnikova AD (2006) Physiologicalroleofnickelandits toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Russ J Plant Physiol 50:711–717

    Article  CAS  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4(2):272

    Article  Google Scholar 

  • Setia R, Dhaliwal SS, Singh R, Kumar V, Taneja S, Kukal SS, Pateriya B (2021) Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263:128321

    Article  CAS  Google Scholar 

  • Shaibur MR, Kitajima N, Sugewara R, Kondo T, Alam S, Imamul Huq SM, Kawai S (2008) Critical toxicity of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic Sorghum. Water Air Soil Pollut 191:279–292

    Article  CAS  Google Scholar 

  • Shalygo NV, Kolensikova NY, Voronetskaya VV, Averina NG (1999) Effects of MnFe, Co and Ni on chlorophyll accumulation and early stages of chlorophyll formation of greening barley seedling. Russ J Plant Physiol 46:496–501

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Brazil J Plant Physiol 17(1):35–52

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP (1993) Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res Commun 21:317–321

    CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall F (2006) Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, Indai. Bull Environ Contam Toxicol 77(2):312–318

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2007) Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, Indai. Ecotox Environ Safe 66:258–266

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defense system in Brassica juncea. Biol Plant 52:767–770

    Article  CAS  Google Scholar 

  • Sharma S, Nagpal AK, Kaur I (2018) Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs. Food Chem 255:15–22

    Article  CAS  Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspicaerulescens and the non hyper accumulator Thlaspiochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Shier WT (1994a) Metals as toxins in plants. J Toxicol Toxin Rev 13:205–216

    Article  CAS  Google Scholar 

  • Shier WT (1994b) Metals as toxins in plants. J Toxicol Toxin Rev 13(2):205–216

    Article  CAS  Google Scholar 

  • Silveira VC, Oliveira AP, Sperotto RA, Espindola LS, Amaral L, Dias JF, Cunha JB, Fett JP (2007) Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Brazil J Plant Physiol 19:127–139

    Article  Google Scholar 

  • Singh BB (1969) Effect of vanadium on the growth, yield and chemical composition of maize (Zea mays L.). Plant Soil 34:209–212

    Article  Google Scholar 

  • Singh AK (2001) Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L). Environ Ecol 19:807–810

    CAS  Google Scholar 

  • Singh AK, Jayakumar S (2017) Heavy metal contamination in sediments of Kanwarjheel wildlife sanctuary, Bihar, Indai. Pollut Res 36(1):48–55

    CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24(1):107–112

    CAS  Google Scholar 

  • Singh B, Wort DJ (1969) Effect of vanadium on growth, chemical composition, and metabolic processes of mature sugar beet (Beta vulgaris L.) plants. Plant Physiol 44:1321–1327

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, Indai. Trop Ecol 51(2):375–387

    CAS  Google Scholar 

  • Singh J, Upadhyay SK, Pathak RK, Gupta V (2011) Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP, Indai. Toxicol Environ Chem 93:462–473

    Article  CAS  Google Scholar 

  • Singh M, Garg VK, Gautam YP, Kumar A (2014) Soil to grain transfer factors of heavy metals in rice and health risk analysis in the vicinity of Narora Atomic Power Station (NAPS). Narora, India

    Google Scholar 

  • Singh JK, Kumar P, Kumar R (2020) Ecological risk assessment of heavy metal contamination in mangrove forest sediment of Gulf of Khambhat region, West Coast of India. SN Appl Sci 2:2027. https://doi.org/10.1007/s42452-020-03890

    Article  CAS  Google Scholar 

  • Sinha SK, Srivastava HS, Mishra SN, Flesch TK, Dale RF (1988) Nitrate assimilation in intact and excised maize leaves in the presence of lead. Bull Environ Contam Toxicol 41(3):419–426

    Article  CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1997) Oxidative stress induced by iron in Hydrillaverticillata (lf) royle: response of antioxidants. Ecotoxicol Environ Saf 38(3):286–291

    Article  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266(4):2005–2008

    Article  CAS  Google Scholar 

  • Rajasthan Statistical Abstract202018–19.pdf. http://www.agriculture.rajasthan.gov.in/content/dam/agriculture/Agriculture%20Department/agriculturalstatistics/rajasthan_agriculture_statistics_at_a_glance_2018-19.pdf.

  • Stephen D, Leon VK (1997) Toxicity of zinc and copper to Brassica species: Implication for phytoremediation. J Environ Qual 26:776–781

    Article  Google Scholar 

  • Stiborova M, Doubravova M, Brezinova A, Friedrich A (1986) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley (Hordeum vulgare L.). Photosynthetica (praha) 20(4):418–425

    CAS  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Planta 47(3):449–452

    Article  Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Planta 49(2):293–296

    Article  CAS  Google Scholar 

  • Sudhakar C, Syamalabai L, Veeranjaneyulu K (1992) Lead tolerance of certain legume species grown on lead ore tailings. Agric Ecosyst Environ 41(3–4):253–261

    Article  CAS  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy:(i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. Comptesrendusbiologies 333(8):597–607

    CAS  Google Scholar 

  • Szolnoki ZS, Farsang A, Puskás I (2013) Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environ Pollut 177:106–115

    Article  CAS  Google Scholar 

  • Treder W, Cieslinski G (2005) Effect of silicon application on cadmium uptake and distribution in strawberryplants grown oncontaminated soils. J Plant Nutr 28:917–929

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    Article  CAS  Google Scholar 

  • Tudoreanu L, Phillips CJC (2004) Modelling cadmium uptake and accumulation in plants. Adv Agron 84:121–157

    Article  CAS  Google Scholar 

  • Tye AM, Young S, Crout NMJ, Zhang H, Preston S, Zhao FJ, McGrath SP (2004) Speciation and solubility of Cu, Ni and Pb in contaminated soils. Eur J Soil Sci 55:579–590

    Article  CAS  Google Scholar 

  • Tyler G, Pahlsson AM, Bengtsson G, Baath E, Tranvik L (1989) Heavy metal ecology and terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Pollut 47:189–2150

    Article  CAS  Google Scholar 

  • U.P statistical Dairy 2018 pdf. http://updes.up.nic.in/esd/reports/dbank_april19/Statistical_Diary_2018_English.pdf).

  • Ullah SM, Gerzabek MH (1991) Influence of fulvic and humic acids on Cu-and V-toxicity to Zea mays (L.). Die Bodenkultur 42:123–134

    CAS  Google Scholar 

  • European Union (2006) Commission Regulation (EC) No. 1881/2006 of 19December2006settingmaximumlevelsforcertaincontaminants in foodstuffs. Off J Eur Union 364:5–24.

  • Vaccarino C, Cimino G, Triposo MM, Laguna G, Guidici KO, Matrese R (1983) Leaf and fruit necroses associated with V-rich ash emitted from a power plant burning fossil fuel. Agric Ecosyst Environ 10:275–283

    Article  Google Scholar 

  • Vanita C, Piar C, Avinash N, Kaur KJ, Pakade YB (2014) Evaluation of heavy metals contamination and its genotoxicity in agricultural soil of Amritsar, Punjab, India. Int J Res Chem Environ 4:20–28

    CAS  Google Scholar 

  • Vazquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated White Lupine in a long-term culture. J Agric Food Chem 56(18):8580–8587

    Article  CAS  Google Scholar 

  • Venkataraman BV, Sudha S (2005) Vanadium Toxicity. Asian J Exp Sci 19(2):127–134

    CAS  Google Scholar 

  • Wainwright SJ, Woolhouse HW (1976) Physiological mechanisms of heavy metal tolerance. In: Chadwicks MJ, Goodman GT (eds) The ecology of resource degradation and renewal, British ecology society of symposium. Blackwell Publishers, Oxford, pp 231–257

    Google Scholar 

  • Wang C, Yang Z, Yuan X, Browne P, Chen L, Ji J (2013) The influences of soil properties on Cu and Zn availability in soil and their transfer to wheat (Triticum aestivum L.) in the Yangtze River delta region. China Geoderma 193–194:131–139

    Article  Google Scholar 

  • Wang Y, Wang S, Nan J, Ma F, Zang Y, Chen Y, Li L, Zhang Q (2015) Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environ Sci Pollut Res 22:19756–19763

    Article  CAS  Google Scholar 

  • Wildner GF, Henkel J (1979) The effect of divalent metal ions on the activity of Mg++ depleted ribulose-1, 5-bisphosphate oxygenase. Planta 146(2):223–228

    Article  CAS  Google Scholar 

  • Winterhalder EK (1963) Differential resistance of two species of Eucalyptus to toxic soil manganese levels. Aust J Sci 25:363–365

    CAS  Google Scholar 

  • Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44

    Article  CAS  Google Scholar 

  • Wood BW, Reilly CC (2007) Interaction of nickel and plant disease. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. American Phytopathological Society Press, Minneapolis, MN, pp 217–247

    Google Scholar 

  • Wood BW, Reilly CC, Nyczepir AP (2006) Field deficiency of nickel in trees: symptoms and causes. Acta Hortic 721:83–98

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1996) Permissible limits of heavy metals in soil and plants. Switzerland, Geneva

    Google Scholar 

  • Wu SH (1994) Effect of manganese excess on the soybean plant cultivated under various growth conditions. J Plant Nutrit 17(6):991–1003

    Article  CAS  Google Scholar 

  • Wuana RA, Adie PA, Abah J, Ejeh MA (2013) Screening of Pearl Millet for phytoextraction potential in soil contaminated with cadmium and lead. Int J Sci Technol 2(4):310–319

    Google Scholar 

  • Yadav A, Yadav PK, Shukla DN (2013) Investigation of heavy metal status in soil and vegetables grown in urban area of Allahabad, Uttar Pradesh, Indai. Int J Sci Res Publ 3(9):1–7

    Google Scholar 

  • Yadav P, Singh B, Garg VK, Mor S, Pulhani V (2017) Bioaccumulation and health risks of heavy metals associated with consumption of rice grains from croplands in Northern India. Hum Ecol Risk Assess Int J 23(1):14–27

    Article  CAS  Google Scholar 

  • Yadav R, Kumar S (2021) Study of the effect of industrial discharges and wastes on seasonal crop cotton around neemrana industrial area, Alwar (Rajasthan). Poll Res 40(3): 1091–1095.

  • Yang X, BaligarVC MDC, Clark RB (1996) Plant tolerance to Ni toxicity. I. Influx, transport and accumulation of Niinfour species. J Plant Nutr 19:73–85

    Article  CAS  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2010) Protective responses of 28 homobrssinolide in cultivars of Triticumaestivum with different levels of nickel. Arch Environ Contam Toxicol 60(1):68–76

    Article  Google Scholar 

  • Zechmeister HG, Grodzinska K, Szarek-Lukaszewska G (2003) Bryophytes. In: Markerts BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Amsterdam, pp 329–375

    Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    Article  CAS  Google Scholar 

  • Zewail RM, Ali M, El-Gamal IS, Al-Maracy SH, Islam KR, Elsadek M et al (2021) Interactive effects of arbuscular mycorrhizal inoculation with nano boron, zinc, and molybdenum fertilization on stevioside contents of stevia (Stevia rebaudiana, L.) plants. Horticulturae 7(8):260

    Article  Google Scholar 

  • Zhang L, Angle JS, Chaney RL (2007) Dohigh-nickelleavesshedbythe nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants. New Phytol 173:509–516

    Article  CAS  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41(7):820–831

    Article  CAS  Google Scholar 

  • Zhu Y-G, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. CurrOpinBiotechnol 20:220–224

    CAS  Google Scholar 

Download references

Acknowledgements

The review article is orginal and is not submitted in any other journal

Author information

Authors and Affiliations

Authors

Contributions

Renu Daulta: Review of literature, data compilation, original writing; Mamta Prakash: Methodology, Review and rewriting, S.K. Goyal: Conceptualization and Review.

Corresponding author

Correspondence to M. Prakash.

Additional information

Editorial responsibility: Hari Pant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daulta, R., Prakash, M. & Goyal, S. Metal content in soils of Northern India and crop response: a review. Int. J. Environ. Sci. Technol. 20, 4521–4548 (2023). https://doi.org/10.1007/s13762-022-03953-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-03953-y

Keywords

Navigation