Skip to main content
Log in

Optimization of process parameters to enhance the bio-decolorization of Reactive Red 21 by Pseudomonas aeruginosa 23N1

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Textile industries produce a large volume of dye-contaminated wastewater through the dyeing process, which poses a high risk to the environment. The reactive dyes are commonly used as colorant organic substances as these are chemically stable and give bright colors to fabrics. This study aims to optimize the decolorization of Reactive Red 21 dye from water by Pseudomonas aeruginosa strain 23N1. The two-level factorial design has been applied to select the levels of operational parameters, which has been further optimized by rotatable central composite design-based response surface methodology. The concentration of yeast extract has shown a significant positive effect (highest coefficient estimate of 25.55) on decolorization by the strain, whereas added glucose and peptone as nutrients for bacteria have shown negative effect (coefficient estimate of − 1.71 and − 1.62, respectively) because the bacteria preferably have utilized glucose and peptone as prime carbon/nitrogen source instead of dye molecules. Quadratic model generated through central composite design using experimental data to predict decolorization percentage has shown a good correlation coefficient (R2 = 0.999) and adjusted correlation coefficient (Adj. R2 = 0.992). The decolorization percentages from model validation experiments are achieved as 93.5 ± 0.4% and 91.5 ± 0.5% for initial dye concentrations of 50 mg/L and 150 mg/L, respectively, and have demonstrated satisfactory correlation with model predicted data. Based on the result obtained, it can be suggested that the strain 23N1 could be efficiently used to decolourize RR21 dye-contaminated wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali I, Gupta VK, Khan TA, Asim M (2012) Removal of arsenate from aqueous solution by electro-coagulation method using Al–Fe electrodes. Int J Electrochem Sci 7:1898–1907

    CAS  Google Scholar 

  • Ali I, AL-Othman ZA, Alwarthan A (2016a) Molecular uptake of congo red dye from water on iron composite nano particles. J Mol Liq 224:171–176

    Article  CAS  Google Scholar 

  • Ali I, AL-Othman ZA, Alwarthan A (2016b) Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of Ametryn from water. J Mol Liq 221:1168–1174

    Article  CAS  Google Scholar 

  • Ali I, AL-Othman ZA, Alwarthan A (2016c) Removal of secbumeton herbicide from water on composite nanoadsorbent. Desal Water Treat 57:10409–10421

    Article  CAS  Google Scholar 

  • Ali I, Alharbi OML, Alothman ZA, Badjah AY, Alwarthan A, Basheer AA (2018) Artificial neural network modelling of amido black dye sorption on iron composite nano material: kinetics and thermodynamics studies. J Mol Liq 250:1–8

    Article  CAS  Google Scholar 

  • Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mat 154:694–702

    Article  CAS  Google Scholar 

  • Ayed L, Bekir K, Achour S, Cheref A, Bakhrouf A (2017) Exploring bioaugmentation strategies for azo dye CI Reactive Violet 5 decolorization using bacterial mixture: dye response surface methodology. Water Environ J 31:80–89

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile dye-containing effluents: a review. Bioresour Technol 58:217–227

    Article  CAS  Google Scholar 

  • Basheer AA (2018) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30:402–406. https://doi.org/10.1002/chir.22808

    Article  CAS  Google Scholar 

  • Bedekar PA, Saratale RG, Saratale GD, Govindwar SP (2014) Oxidative stress response in dye degrading bacterium Lysinibacillus sp. RGS exposed to Reactive Orange 16, degradation of RO16 and evaluation of toxicity. Environ Sci Pollut Res 21:11075–11085

    Article  CAS  Google Scholar 

  • Burakova EA, Ali I, Dyachkova TP, Rukhov AV, Tugolukov EN, Galunin EV, Tkachev AG, Basheer AA (2018) Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J Mol Liq 253:340–346

    Article  CAS  Google Scholar 

  • Chen G, Huang MH, Chen L, Chen DH (2011) A batch decolorization and kinetic study of reactive black 5 by a bacterial strain Enterobacter sp. GY-1. Int Biodeterior Biodegrad 65:790–796

    Article  CAS  Google Scholar 

  • Colak F, Atar N, Olgun A (2009) Biosorption of acidic dyes from aqueous solution by Paenibacillus macerans: kinetic, thermodynamic and equilibrium studies. Chem Eng J 150:122–130

    Article  CAS  Google Scholar 

  • Colak F, Atar N, Yazıcıoglu D, Olgun A (2011) Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chem Eng J 173:422–428

    Article  CAS  Google Scholar 

  • Dafale N, Wate S, Meshram S, Nandy T (2008) Kinetic study approach of remazol black-B use for the development of two-stage anoxic–oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. J Hazard Mat 159:319–328

    Article  CAS  Google Scholar 

  • Das AJ, Kumar R (2018) Bioslurry phase remediation of petroleum-contaminated soil using potato peels powder through biosurfactant producing Bacillus licheniformis J1. Int J Environ Sci Technol 15:525–532

    Article  CAS  Google Scholar 

  • Dasgupta J, Singh M, Sikder J, Padarthi V, Chakraborty S, Curcio S (2015) Response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration. Ecotoxicol Environ Saf 121:271–278

    Article  CAS  Google Scholar 

  • Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq 215:671–679

    Article  CAS  Google Scholar 

  • Deive FJ, Dominguez A, Barrio T, Moscoso F, Moran P, Longo MA, Sanroman MA (2010) Decolorization of dye reactive black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). J Hazard Mater 182:735–742

    Article  CAS  Google Scholar 

  • Du LN, Yang YY, Li G, Wang S, Jia XM, Zhao YH (2010) Optimization of heavy metal-containing dye Acid Black 172 decolorization by Pseudomonas sp. DY1 using statistical designs. Int Biodeterior Biodegrad 64:566–573

    Article  CAS  Google Scholar 

  • Ekka B, Sahu MK, Patel RK, Dash P (2016) Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: optimization using statistical design. Water Resour Ind. https://doi.org/10.1016/j.wri.2016.08.001

    Article  Google Scholar 

  • Garg SK, Tripathi M, Singh SK, Tiwari JK (2012) Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int Biodeterior Biodegrad 74:24–35

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2012) Environmental water: advances in treatment, remediation and recycling. Elsevier, Amsterdam. ISBN 9780444594037

    Google Scholar 

  • Hafshejani MK, Ogugbue CJ, Morad N (2014) Application of response surface methodology for optimization of decolorization and mineralization of triazo dye Direct Blue 71 by Pseudomonas aeruginosa. 3 Biotech 4:605–619

    Article  Google Scholar 

  • Imran M, Arshad M, Negm F, Khalid A, Shaharoona B, Hussain S, Nadeem SM, Crowley DE (2016) Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. Strain IFN4. Ecotoxicol Environ Saf 124:42–49

    Article  CAS  Google Scholar 

  • Jadhav SB, Chougule AS, Shah DP, Pereira CS, Jadhav JP (2015) Application of response surface methodology for the optimization of textile effluent biodecolorization and its toxicity perspectives using plant toxicity, plasmid nicking assays. Clean Technol Environ Policy 17:709–720

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  CAS  Google Scholar 

  • Khan TA, Sharma S, Ali I (2011) Adsorption of Rhodamine B dye from aqueous solution onto acid activated mango (Mangifera indica) leaf powder: equilibrium, kinetic and thermodynamic studies. J Toxicol Environ Health Sci 3:286–297

    CAS  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97

    Article  CAS  Google Scholar 

  • Khataee AR, Dehghan G, Ebadi A, Zarei M, Pourhassan M (2010) Biological treatment of a dye solution by Macroalgae Chara sp.: effect of operational parameters, intermediates identification and artificial neural network modeling. Bioresour Technol 101:2252–2258

    Article  CAS  Google Scholar 

  • Korenak J, Ploder J, Trcek J, Helix-Nielsen C, Petrinic I (2018) Decolourisations and biodegradations of model azo dye solutions using a sequence batch reactor, followed by ultrafiltration. Int J Environ Sci Technol 15:483–492

    Article  CAS  Google Scholar 

  • Krishnan J, Kishore AA, Suresh A, Madhumeetha B, Prakash DG (2016) Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2016.11.024

    Article  Google Scholar 

  • Kuppusamy S, Sethurajan M, Kadarkarai M, Aruliah R (2017) Biodecolorization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. J Environ Chem Eng 5:716–724

    Article  CAS  Google Scholar 

  • Li H, Zhang R, Tang L, Zhang J, Mao Z (2014) Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism. J Environ Sci 26:1125–1134

    Article  CAS  Google Scholar 

  • Lim CK, Bay HH, Aris A, Majid ZA, Ibrahim Z (2013a) Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environ Sci Pollut Res 20:5056–5066

    Article  CAS  Google Scholar 

  • Lim CK, Bay HH, Aris A, Majid ZA, Ibrahim Z (2013b) Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environ Sci Pollut Res 20:5056–5066

    Article  CAS  Google Scholar 

  • Liu C, You Y, Zhao R, Sun D, Zhang P, Jiang J, Zhu A, Liu W (2017a) Biosurfactant production from Pseudomonas taiwanensis L1011 and its application in accelerating the chemical and biological decolorization of azo dyes. Ecotoxicol Environ Saf 145:8–15

    Article  CAS  Google Scholar 

  • Liu W, Liu C, Liu L, You Y, Jiang J, Zhou Z, Dong Z (2017b) Simultaneous decolorization of sulfonated azo dyes and reduction of hexavalent chromium under high salt condition by a newly isolated salt tolerant strain Bacillus circulans BWL1061. Ecotoxicol Environ Saf 141:9–16

    Article  CAS  Google Scholar 

  • Ma C, Zhou S, Lu Q, Yang G, Wang D, Zhuang L, Li F, Lei F (2013) Decolorization of Orange I under alkaline and anaerobic conditions by a newly isolated humus-reducing bacterium, Planococcus sp. MC01. Int Biodeterior Biodegrad 83:17–24

    Article  CAS  Google Scholar 

  • Maqbool Z, Hussain S, Ahmad T, Nadeem H, Imran M, Khalid A, Abid M, Martin-Laurent F (2016) Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environ Sci Pollut Res 23:11224–11239

    Article  CAS  Google Scholar 

  • Mishra S, Maiti A (2018) The efficacy of bacterial species to decolourise reactive azo, anthraquinone and triphenylmethane dyes from wastewater: a review. Environ Sci Poll Res. 25:8286–8314

    Article  CAS  Google Scholar 

  • Naseer A, Nosheen S, Kiran S, Kamal S, Javaid MA, Mustafa M, Tahir A (2016) Degradation and detoxification of Navy Blue CBF dye by native bacterial communities: an environmental bioremedial approach. Desalination Water Treat 57:24070–24082

    Article  CAS  Google Scholar 

  • Ong SA, Toorisaka E, Hirata M, Hano T (2012) Decolorization of Orange II using an anaerobic sequencing batch reactor with and without co-substrates. J Environ Sci 24:291–296

    Article  CAS  Google Scholar 

  • Oturkar CC, Nemade HN, Mulik PM, Patole MS, Hawaldar RR, Gawai KR (2011) Mechanistic investigation of decolorization and degradation of reactive red 120 by Bacillus lentus BI377. Bioresour Technol 102:758–764

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176:503–509

    Article  CAS  Google Scholar 

  • Pathak H, Soni D, Chauhan K (2014) Evaluation of in vitro efficacy for decolorization and degradation of commercial azo dye RB-B by Morganella sp. HK-1 isolated from dye contaminated industrial landfill. Chemosphere 105:126–132

    Article  CAS  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigments 58:179–196

    Article  CAS  Google Scholar 

  • Pelegrini R, Peralto-Zamora P, De Andrade AR, Reyers J, Duran N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B: Environ 22:83–90

    Article  CAS  Google Scholar 

  • Prasad SS, Aikat K (2014) Study of bio-degradation and bio-decolorization of azo dye by Enterobacter sp. SXCR. Environ Technol 35:956–965

    Article  CAS  Google Scholar 

  • Senthilkumar S, Prabhu HJ, Perumalsamy M (2013) Response surface optimization for biodegradation of textile azo dyes using isolated bacterial strain Pseudomonas sp. Arab J Sci Eng 38:2279–2291

    Article  CAS  Google Scholar 

  • Sharma P, Singh L, Dilbaghi N (2009a) Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box–Behnken design. J Hazard Mater 164:1024–1029

    Article  CAS  Google Scholar 

  • Sharma S, Malik A, Satya S (2009b) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by Aspergillus lentulus AML05. J Hazard Mater 164:1198–1204

    Article  CAS  Google Scholar 

  • Sheth NT, Dave SR (2009) Optimization for enhanced decolorization and degradation of reactive red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS. Biodegradation 20:827–836

    Article  CAS  Google Scholar 

  • Slokar YM, Marechal AM (1997) Methods of decolorization of textile wastewaters. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Telke A, Joshi S, Jadhav S, Tamboli D, Govindwar S (2010) Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation 21:283–296

    Article  CAS  Google Scholar 

  • Wang ZW, Liu XL (2008) Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour Technol 99:8245–8251

    Article  CAS  Google Scholar 

  • Wang ZW, Liang JS, Liang Y (2013) Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1. Int Biodeterior Biodegrad 76:41–48

    Article  CAS  Google Scholar 

  • Wang N, Chu Y, Wu F, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244

    Article  CAS  Google Scholar 

  • Wei Y, Mu J, Zhu X, Gao Q, Zhang Y (2011) Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated bacteria. J Environ Sci 23(Supplement):S142–S145

    Article  Google Scholar 

  • Xu Y, Lebrun RE (1999) Treatment of textile dye plant effluent by nanofiltration membrane. Sep Sci Technol 34:2501–2519

    Article  CAS  Google Scholar 

  • Yang Y, Wyatt DT (1998) Decolorization of textile dyestuffs using UV/H2O2 photochemical oxidation technology. Text Chem Color 30:27–35

    CAS  Google Scholar 

  • Yang X, Zheng J, Lu Y, Jia R (2016) Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. Environ Sci Pollut Res 23:9585–9597

    Article  CAS  Google Scholar 

  • Yenikaya C, Atar E, Olgun A, Atar N, İlhan S, Colak F (2010) Biosorption study of anionic dyes from aqueous solutions using Bacillus amyloliquefaciens. Eng Life Sci 10:233–241

    Article  CAS  Google Scholar 

  • Zhao L, Zhou J, Jia Y, Chen J (2010) Biodecolorization of Acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology. J Hazard Mater 181:602–608

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from Ministry of Human Resource Development (MHRD), Government of India, for student scholarship and funding support through a project (IMPRINT scheme, Project No. 6125) along with Ministry of Urban Development, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maiti.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Additional information

Editorial responsibility: Necip Atar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Maiti, A. Optimization of process parameters to enhance the bio-decolorization of Reactive Red 21 by Pseudomonas aeruginosa 23N1. Int. J. Environ. Sci. Technol. 16, 6685–6698 (2019). https://doi.org/10.1007/s13762-018-2023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2023-1

Keywords

Navigation