Skip to main content
Log in

Optimization of Decoloration Conditions of Methylene Blue Wastewater by Penicillium P1

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The objective of this work was to optimize the decolorization of methylene blue dye wastewater by Penicillium P1. The influencing factors included initial methylene blue concentration, initial pH value, salinity and inoculation percentage of penicillium spores. The decolorization rate was optimized by response surface center composite design methods. The optimal optimization condition was methylene blue concentration 50 mg/L, pH value 3.61, salinity 3.7%, and inoculation percentage 3.21% (When the MSM was 100 ml), the predicted decolorization rate of methylene blue 85%. The UV and the FTIR spectrum analysis showed that the structure of methylene blue changed during the process of decolorization of methylene blue by Penicillium P1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shabaan OA, Jahin HS, Mohamed GG (2020) Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab J Chem 13:1329–1336. https://doi.org/10.1016/j.arabjc.2020.01.010

    Article  CAS  Google Scholar 

  2. Parlayc E, Pehlivan E (2020) Biosorption of methylene blue and malachite green on biodegradable magnetic Cortaderia selloana flower spikes: modeling and equilibrium study. Int J Phytoremediat 1:1–15. https://doi.org/10.1080/15226514.2020.1788502

    Article  CAS  Google Scholar 

  3. Couto SR (2009) Dye removal by immobilized fungi. Biotechnol Adv 27:227–235. https://doi.org/10.1016/j.biotechadv.2008.12.001

    Article  CAS  Google Scholar 

  4. Chen L, Wang G, Wu S, Xia Z, Zhou S (2019) Heavy metals in agricultural soils of the lihe river watershed, east china: spatial distribution, ecological risk, and pollution source. Int J Environ Res Public Health 16:2092–2094. https://doi.org/10.3390/ijerph16122094

    Article  CAS  Google Scholar 

  5. Saratale RG (2011) Outlook of bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  6. Telke AA, Kalyani DC, Dawkar VV, Govindwar SP (2009) Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye c.i. reactive orange 16. J Hazard Mater 172:298–309. https://doi.org/10.1016/j.jhazmat.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  7. Li M, Meng X, Wang X (2001) Adsorption and degradation of three reactive dyes by Penicillium sp. China Environ Sci 21:449–449. https://doi.org/10.3321/j.issn:1000-6923.2001.05.015

    Article  CAS  Google Scholar 

  8. Chen Z, Chen H, Pan X (2015) Investigation of methylene blue biosorption and biodegradation by Bacillus thuringiensis 016. Water Air Soil Poll 226:146. https://doi.org/10.1007/s11270-015-2417-3

    Article  CAS  Google Scholar 

  9. Conneely A, Smyth WF, Mcmullan G (2002) Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography. Anal Chim Acta 451:259–270. https://doi.org/10.1016/S0003-2670(01)01415-5

    Article  CAS  Google Scholar 

  10. Guler UA, Sarioglu M (2013) Single and binary biosorption of Cu(II), Ni(II) and methylene blue by raw and pretreated Spirogyra sp.: equilibrium and kinetic modeling. J Environ Chem Eng 1:369–377. https://doi.org/10.1016/j.jece.2013.05.017

    Article  CAS  Google Scholar 

  11. Tamboli DP, Kagalkar AN, Jadhav MU, Jadhav JP, Govindwar SP (2010) Production of polyhydroxyhexadecanoic acid by using waste biomass of sphingobacterium sp. atm generated after degradation of textile dye direct red 5b. Bioresour Technol 101:2421–2427. https://doi.org/10.1016/j.biortech.2009.11.094

    Article  CAS  PubMed  Google Scholar 

  12. Lade HS, Waghmode TR, Kadam AA (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Biodeter Biodegrad 72:94–107. https://doi.org/10.1016/j.ibiod.2012.06.001

    Article  CAS  Google Scholar 

  13. Shawabkeh RA, Tutenji MF (2003) Experimental study and modeling of basic dye sorption by diatomaceous clay. Appl Clay Sci 24:111–120. https://doi.org/10.1016/S0169-1317(03)00154-6

    Article  CAS  Google Scholar 

  14. Gbenle GO, Osuntoki AA, Olukanni OD (2009) Decolourization of azo dyes by a strain of micrococcus isolated from a refuse dump soil. Biotechnology 8:442–448. https://doi.org/10.3923/biotech.2009.442.448

    Article  Google Scholar 

  15. Parshetti GK, Parshetii SG, Telke AA (2011) Biodegradation of crystal violet by Agrobacterium radiobacter. J Environ Sci 23:1384–1393. https://doi.org/10.1016/s1001-0742(10)60547-5

    Article  CAS  Google Scholar 

  16. Waghmode TR, Kurade MB, Khandare RV, Govindwar SP (2011) A sequential aerobic/microaerophilic decolorization of sulfonated mono-azo dye Golden yellow HER by microbial consortium GG-BL. Int Biodeterior Biodegr 65:1024–1034. https://doi.org/10.1016/j.ibiod.2011.08.002

    Article  CAS  Google Scholar 

  17. Ahmadi R, Rezaee A, Hossini H (2015) Optimization of Cr (VI) removal by sulfate reducing bacteria using response surface methodology. Desalin Water Treat 57:11096–11102. https://doi.org/10.1080/19443994.2015.1041055

    Article  CAS  Google Scholar 

  18. Liu J, Chen Y, Xu R, Jia Y (2013) Screening and evaluation of biosurfactant-producing strains isolated from oilfield wastewater. Indian J Microbiol 53:168–174. https://doi.org/10.1007/s12088-013-0379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Xue J, Wei X, Su H, Xu R (2020) Optimization of Cr6+ Removal by Bacillus subtilis Strain SZMC 6179J from chromium-containing soil. Indian J Microbiol 60:430–435. https://doi.org/10.1007/s12088-020-00886-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noraini CHC, Morad N, Norli I, Teng TT, Ogugbue CJ (2012) Methylene blue degradation by Sphingomonas paucimobilis under aerobic conditions. Water Air Soll Poll 223:5131–5142. https://doi.org/10.1007/s11270-012-1264-8

    Article  CAS  Google Scholar 

  21. Mirazimi SMJ, Rashchi F, Saba M (2013) Vanadium removal from roasted LD converter slag: optimization of parameters by response surface methodology (RSM). Sep Purif Technol 116:175–183. https://doi.org/10.1016/j.seppur.2013.05.032

    Article  CAS  Google Scholar 

  22. Ebrahimi B, Shojaosadati SA, Ranaie SO, Mousavi SM (2010) Optimization and evaluation of acetylcholine esterase immobilization on ceramic packing using response surface methodology. Process Biochem 45:81–87. https://doi.org/10.1016/j.procbio.2009.08.007

    Article  CAS  Google Scholar 

  23. Zhang T, Oyama TK, Horikoshi S, Hidaka H, Zhao J, Serpone N (2002) Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Sol Energ Mat Sol C 73:287–303. https://doi.org/10.1016/S0927-0248(01)00215-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianghong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Su, H., Xue, J. et al. Optimization of Decoloration Conditions of Methylene Blue Wastewater by Penicillium P1. Indian J Microbiol 62, 103–111 (2022). https://doi.org/10.1007/s12088-021-00982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00982-y

Keywords

Navigation