Skip to main content
Log in

Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The 16S rRNA sequence and biochemical characteristics revealed the isolated organism as Pseudomonas sp. SU-EBT. This strain showed 97 and 90% decolorization of a recalcitrant dye, Congo red (100 mg l−1) and textile industry effluent with 50% reduction in COD within 12 and 60 h, respectively. The optimum pH and temperature for the decolorization was 8.0 and 40°C, respectively. Pseudomonas sp. SU-EBT was found to tolerate the dye concentration up to 1.0 g l−1. Significant induction in the activity of intracellular laccase suggested its involvement in the decolorization of Congo red. The metabolites formed after decolorization of Congo red, such as p-dihydroxy biphenyl, 8-amino naphthol 3-sulfonic acid and 3-hydroperoxy 8-nitrosonaphthol were characterized using FTIR and GC–MS. Phytotoxicity study revealed nontoxic nature of the degradation metabolites to Sorghum bicolor, Vigna radiata, Lens culinaris and Oryza sativa plants as compared to Congo red and textile industry effluent. Pseudomonas sp. SU-EBT decolorized several individual textile dyes, dye mixtures and textile industry effluent, thus it is a useful strain for the development of effluent treatment methods in textile processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amitaia G, Adania R, Sod-Moriah G, Rabinovitz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hear Y (1998) Oxidative biodegradation of phosphorothiolates by fungal lacccase. FEBS Lett 438:195–200. doi:10.1016/S0014-5793(98)01300-3

    Article  Google Scholar 

  • APHA-AWWA-WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Blanquez P, Casas N, Gabarell FX, Sarra M, Caminal G, Vincent T (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38:2166–2172. doi:10.1016/j.watres.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441. doi:10.1099/mic.0.27805-0

    Article  CAS  PubMed  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61:4374–4377

    CAS  PubMed  Google Scholar 

  • Constapel M, Schellenträger M, Marzinkowski JM, Gab S (2009) Degradation of reactive dyes in wastewater from the textile industry by ozone: analysis of the products by accurate masses. Water Res 43:733–743. doi:10.1016/j.watres.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182. doi:10.1016/j.biortech.2006.05.025

    Article  CAS  PubMed  Google Scholar 

  • Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP (2009) Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 20:245–255. doi:10.1007/s10532-008-9217-z

    Article  CAS  PubMed  Google Scholar 

  • Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2009) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20:209–220. doi:10.1007/s10532-008-9214-2

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Figueroa S, Vázqueza L, Alvarez-Gallegos A (2009) Decolorizing textile wastewater with Fenton’s reagent electrogenerated with a solar photovoltaic cell. Water Res 43:283–294. doi:10.1016/j.watres.2008.10.014

    Article  CAS  PubMed  Google Scholar 

  • Hsueh CC, Chen BY (2007) Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater 141:842–849. doi:10.1016/j.jhazmat.2006.07.056

    Google Scholar 

  • Jadhav JP, Govindwar SP (2006) Biotransformation of Malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315–323. doi:10.1002/yea.1356

    Article  CAS  PubMed  Google Scholar 

  • Jang MS, Jung BG, Sung NC, Lee YC (2007) Decolorization of textile plant effluent by Citrobacter sp. strain KCTC 18061P. J Gen Appl Microbiol 53:339–343. doi:10.2323/jgam.53.339

    Article  CAS  PubMed  Google Scholar 

  • Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2007) Biodegradation of benzidine based dye direct blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410. doi:10.1016/j.biortech.2006.05.023

    Article  CAS  PubMed  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742. doi:10.1016/j.jhazmat.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  • Kaushik P, Malik A (2009) Fungal dye decolorization: recent advances and future potential. Environ Int 35:127–141. doi:10.1016/j.envint.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mane UV, Gurav PN, Deshmukh AM, Govindwar SP (2008) Degradation of textile dye reactive navy blue RX (Reactive blue–59) by an isolated Actinomycete Streptomyces krainskii SUK-5. Malays J Microbiol 4:1–5

    Google Scholar 

  • Mathur N, Bhatnagar P, Bakre P (2005) Assessing mutagenicity of textile dyes from Pali (Rajasthan) using ames bioassay. Appl Ecol Environ Res 4:111–118

    Google Scholar 

  • Meehan C, Banal IM, McMullan G, Nigam P, Smyth F, Marchant R (2000) Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ Int 26:75–79. doi:10.1016/S0160-4120(00)00084-2

    Article  CAS  PubMed  Google Scholar 

  • Miller R, Kuglin J, Gallagher S, Flurkey WH (1997) A spectrophotometric assay for laccase using o-tolidine. J Food Biochem 21:445–459

    Article  CAS  Google Scholar 

  • Parshetti GK, Kalme SD, Saratale GD, Govindwar SP (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstruction phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salokhe MD, Govindwar SP (1999) Effect of carbon source on the biotransformation enzymes in Serratia marcescens. World J Microbiol Biotechnol 15:229–232. doi:10.1023/A:1008875404889

    Article  CAS  Google Scholar 

  • Sugiura W, Miyashita T, Yokoyama T, Arai M (1999) Isolation of azo dye degrading microorganisms and their application to white discharge printing of fabric. J Biosci Bioeng 88:577–581. doi:10.1016/S1389-1723(00)87680-X

    Article  CAS  PubMed  Google Scholar 

  • Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decolorization of textile dyes. Enzym Microb Technol 24:130–137. doi:0141-0229/99

    Article  CAS  Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (2004) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor joining method. PNAS 101:11034–11035. doi:10.1073/pnas.0404206101

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:598–599. doi:10.1093/molbev/msm092

    Article  Google Scholar 

  • Telke AA, Kalyani DC, Jadhav JP (2008) Govindwar SP. Kinetics and mechanism of reactive red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    CAS  Google Scholar 

  • Telke AA, Kalyani DC, Dawkar VV, Govindwar SP (2009) Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. Reactive Orange 16. J Hazard Mater doi:10.1016/j.jhazmat.2009.07.008

Download references

Acknowledgments

One of the authors (Mr. Amar A. Telke) is thankful to the Council of Scientific and Industrial Research, New Delhi for financial assistance. Authors also thank the Common Facility Center, Shivaji University, Kolhapur, India for GC–MS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay P. Govindwar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telke, A.A., Joshi, S.M., Jadhav, S.U. et al. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation 21, 283–296 (2010). https://doi.org/10.1007/s10532-009-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9300-0

Keywords

Navigation