Skip to main content

Advertisement

Log in

Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes

  • Maternal and Childhood Nutrition (AC Wood, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

An increasing body of evidence suggests that the gut microbiome influences the pathogenesis of insulin resistance and type 2 diabetes (T2D). In this review, we will discuss the latest findings regarding the mechanisms linking the gut microbiome and microbial metabolites with T2D and therapeutic approaches based on the gut microbiota for the prevention and treatment of T2D.

Recent Findings

Alterations in the gut microbial composition are associated with the risk of T2D. The gut microbiota can metabolize dietary- and host-derived factors to produce numerous microbial metabolites, which are involved in metabolic processes modulating nutrition and energy harvest, gut barrier function, systemic inflammation, and glucose metabolism.

Summary

Microbial metabolites are important mediators of microbial-host crosstalk impacting host glucose metabolism. Furthermore, microbiome-based interventions may have beneficial effects on glycemic control. Future research is required to develop personalized T2D therapy based on microbial composition and/or metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.

  2. Divers J, Mayer-Davis EJ, Lawrence JM, Isom S, Dabelea D, Dolan L, et al. Trends in incidence of type 1 and type 2 diabetes among youths - selected counties and Indian reservations, United States, 2002-2015. MMWR Morb Mortal Wkly Rep. 2020;69(6):161–5. https://doi.org/10.15585/mmwr.mm6906a3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. https://doi.org/10.1126/science.1223813.

    Article  CAS  PubMed  Google Scholar 

  4. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20. https://doi.org/10.1126/science.1104816.

    Article  CAS  PubMed  Google Scholar 

  5. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. https://doi.org/10.1038/nature08821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.org/10.1038/nature11234.

    Article  CAS  Google Scholar 

  7. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. https://doi.org/10.1126/science.1237439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60(4):824–31. https://doi.org/10.1016/j.jhep.2013.11.034.

    Article  CAS  PubMed  Google Scholar 

  9. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35. https://doi.org/10.1136/gutjnl-2012-303839.

    Article  CAS  PubMed  Google Scholar 

  10. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuno MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5:190. https://doi.org/10.3389/fmicb.2014.00190.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6. https://doi.org/10.1038/nature12506.

    Article  CAS  PubMed  Google Scholar 

  12. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61. https://doi.org/10.1007/s00125-011-2329-8.

    Article  CAS  PubMed  Google Scholar 

  13. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. https://doi.org/10.1371/journal.pone.0009085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. https://doi.org/10.1038/nature11450.

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. https://doi.org/10.1038/nature12198.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108. https://doi.org/10.1371/journal.pone.0071108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, et al. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes Care. 2014;37(8):2343–50. https://doi.org/10.2337/dc13-2817.

    Article  CAS  PubMed  Google Scholar 

  18. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6. https://doi.org/10.1038/nature15766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1–9. https://doi.org/10.1530/EC-15-0094.

    Article  CAS  PubMed  Google Scholar 

  20. Candela M, Biagi E, Soverini M, Consolandi C, Quercia S, Severgnini M, et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br J Nutr. 2016;116(1):80–93. https://doi.org/10.1017/S0007114516001045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. •• Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81. https://doi.org/10.1038/nature18646This study found that human insulin resistance was associated with increased serum BCAA levels, with the association mainly driven byPrevotella copriandBacteroides vulgatus.Their experiment in mice suggested that microbial interventions may have the potential to improve insulin resistance and thus reduce the risk of T2D and cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  22. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velasquez-Mejia EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Luo X, Mao X, Tao Y, Ran X, Zhao H, et al. Gut microbiome analysis of type 2 diabetic patients from the Chinese minority ethnic groups the Uygurs and Kazaks. PLoS One. 2017;12(3):e0172774. https://doi.org/10.1371/journal.pone.0172774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Org E, Blum Y, Kasela S, Mehrabian M, Kuusisto J, Kangas AJ, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 2017;18(1):70. https://doi.org/10.1186/s13059-017-1194-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–9. https://doi.org/10.1016/j.micpath.2017.08.038.

    Article  CAS  PubMed  Google Scholar 

  26. • Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810–20. https://doi.org/10.1007/s00125-018-4550-1This study found altered gut microbial composition in individuals with prediabetes with a decreased abundance ofClostridiumandA.muciniphila. However, the prediabetic phenotype was not reproduced in mice that underwent human fecal microbiota transplantation.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Salamon D, Sroka-Oleksiak A, Kapusta P, Szopa M, Mrozinska S, Ludwig-Slomczynska AH, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on nextgeneration sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128(6):336–43. https://doi.org/10.20452/pamw.4246.

    Article  PubMed  Google Scholar 

  28. Zhao L, Lou H, Peng Y, Chen S, Zhang Y, Li X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine. 2019;66:526–37. https://doi.org/10.1007/s12020-019-02103-8.

    Article  CAS  PubMed  Google Scholar 

  29. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/j.1574-6968.2009.01514.x.

    Article  CAS  PubMed  Google Scholar 

  30. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7(5):949–61. https://doi.org/10.1038/ismej.2012.158.

    Article  CAS  PubMed  Google Scholar 

  31. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7. https://doi.org/10.1053/j.gastro.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  32. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57. https://doi.org/10.2337/db10-0253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36. https://doi.org/10.1136/gutjnl-2014-308778.

    Article  CAS  PubMed  Google Scholar 

  34. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4. https://doi.org/10.1126/science.aad3503.

    Article  CAS  PubMed  Google Scholar 

  35. Khan MT, Nieuwdorp M, Backhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20(5):753–60. https://doi.org/10.1016/j.cmet.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  36. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  37. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–91. https://doi.org/10.1038/nrendo.2015.128.

    Article  CAS  PubMed  Google Scholar 

  38. Stoddart LA, Smith NJ, Milligan G. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1,-2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev. 2008;60(4):405–17. https://doi.org/10.1124/pr.108.00802.

    Article  CAS  PubMed  Google Scholar 

  39. Priyadarshini M, Navarro G, Layden BT. Gut microbiota: FFAR reaching effects on islets. Endocrinology. 2018;159(6):2495–505. https://doi.org/10.1210/en.2018-00296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larraufie P, Martin-Gallausiaux C, Lapaque N, Dore J, Gribble FM, Reimann F, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018;8(1):74. https://doi.org/10.1038/s41598-017-18259-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71. https://doi.org/10.2337/db11-1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A. 2004;101(4):1045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829. https://doi.org/10.1038/ncomms2852.

    Article  CAS  PubMed  Google Scholar 

  44. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat Inflamm. 2014;2014:162021. https://doi.org/10.1155/2014/162021.

    Article  CAS  Google Scholar 

  45. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156(1–2):84–96. https://doi.org/10.1016/j.cell.2013.12.016.

    Article  CAS  PubMed  Google Scholar 

  46. Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics. 2015;7(4):669–80. https://doi.org/10.2217/epi.15.20.

    Article  CAS  PubMed  Google Scholar 

  47. Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benefic Microbes. 2010;1(4):433–7. https://doi.org/10.3920/BM2010.0028.

    Article  CAS  Google Scholar 

  48. Saemann MD, Bohmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2. https://doi.org/10.1096/fj.00-0359fje.

    Article  CAS  PubMed  Google Scholar 

  49. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://doi.org/10.1097/MCO.0b013e32833eebe5.

    Article  CAS  PubMed  Google Scholar 

  50. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57(12):3126–35. https://doi.org/10.1007/s10620-012-2259-4.

    Article  CAS  PubMed  Google Scholar 

  51. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7. https://doi.org/10.1038/nature18309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54. https://doi.org/10.1136/gutjnl-2014-307913.

    Article  CAS  PubMed  Google Scholar 

  54. •• Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–5. https://doi.org/10.1038/s41588-019-0350-xThis bidirectional MR study supports a causal effect of the gut microbiome on metabolic traits. They found that host-genetics predicted increase in gut production of butyrate was associated with improved insulin sensitivity, whereas increased propionate levels were causally related to an increased risk of T2D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tirosh A, Calay ES, Tuncman G, Claiborn KC, Inouye KE, Eguchi K, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med. 2019;11(489):eaav0120. https://doi.org/10.1126/scitranslmed.aav0120.

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz-Canela M, Guasch-Ferre M, Toledo E, Clish CB, Razquin C, Liang LM, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. 2018;61(7):1560–71. https://doi.org/10.1007/s00125-018-4611-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM, Manson JE, et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ Genom Precis Med. 2018;11(4):e002157. https://doi.org/10.1161/CIRCGEN.118.002157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Flores-Guerrero JL, Oste MCJ, Kieneker LM, Gruppen EG, Wolak-Dinsmore J, Otvos JD, et al. Plasma branched-chain amino acids and risk of incident type 2 diabetes: results from the PREVEND prospective cohort study. J Clin Med. 2018;7(12):513. https://doi.org/10.3390/jcm7120513.

    Article  PubMed Central  Google Scholar 

  59. Cummings NE, Williams EM, Kasza I, Konon EN, Schaid MD, Schmidt BA, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018;596(4):623–45. https://doi.org/10.1113/JP275075.

    Article  CAS  PubMed  Google Scholar 

  60. Giesbertz P, Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care. 2016;19(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  61. Lian K, Du C, Liu Y, Zhu D, Yan W, Zhang H, et al. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice. Diabetes. 2015;64(1):49–59. https://doi.org/10.2337/db14-0312.

    Article  CAS  PubMed  Google Scholar 

  62. Mahendran Y, Jonsson A, Have CT, Allin KH, Witte DR, Jorgensen ME, et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia. 2017;60(5):873–8. https://doi.org/10.1007/s00125-017-4222-6.

    Article  CAS  PubMed  Google Scholar 

  63. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647–58. https://doi.org/10.1001/archinte.159.22.2647.

    Article  CAS  PubMed  Google Scholar 

  64. Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21(11):702–14. https://doi.org/10.1016/j.molmed.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  65. Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–88. https://doi.org/10.1002/hep.29857.

    Article  CAS  PubMed  Google Scholar 

  66. Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215(2):383–96. https://doi.org/10.1084/jem.20171965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsboll T, Knop FK. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J Diabetes Complicat. 2017;31(5):918–27. https://doi.org/10.1016/j.jdiacomp.2017.01.011.

    Article  Google Scholar 

  68. Melian EB, Plosker GL. Colesevelam. Am J Cardiovasc Drugs. 2001;1(2):141–6; discussion 7-8. https://doi.org/10.2165/00129784-200101020-00007.

    Article  CAS  PubMed  Google Scholar 

  69. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JE, Shah T, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–61. https://doi.org/10.1016/S0140-6736(14)61183-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. https://doi.org/10.1016/j.cmet.2012.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583–94. https://doi.org/10.1093/eurheartj/ehy799.

    Article  CAS  PubMed  Google Scholar 

  72. Shan ZL, Sun TP, Huang H, Chen SJ, Chen LK, Luo C, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888–94. https://doi.org/10.3945/ajcn.117.157107.

    Article  CAS  PubMed  Google Scholar 

  73. Jia J, Dou P, Gao M, Kong X, Li C, Liu Z, et al. Assessment of causal direction between gut microbiota-dependent metabolites and cardiometabolic health: a bidirectional Mendelian randomization analysis. Diabetes. 2019;68(9):1747–55. https://doi.org/10.2337/db19-0153.

    Article  CAS  PubMed  Google Scholar 

  74. Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81. https://doi.org/10.1016/j.jbiosc.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  75. Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37. https://doi.org/10.1194/jlr.M051680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heianza Y, Sun D, Li X, DiDonato JA, Bray GA, Sacks FM, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut. 2019;68(2):263–70. https://doi.org/10.1136/gutjnl-2018-316155.

    Article  CAS  PubMed  Google Scholar 

  77. Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology-Sgm. 2013;159:402–10. https://doi.org/10.1099/mic.0.064139-0.

    Article  CAS  Google Scholar 

  78. Chimerel C, Emery E, Summers DK, Keyser U, Gribble FM, Reimann F. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202–8. https://doi.org/10.1016/j.celrep.2014.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Mello VD, Paananen J, Lindstrom J, Lankinen MA, Shi L, Kuusisto J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337. https://doi.org/10.1038/srep46337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tuomainen M, Lindstrom J, Lehtonen M, Auriola S, Pihlajamaki J, Peltonen M, et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. 2018;8(1):35. https://doi.org/10.1038/s41387-018-0046-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ji Y, Gao Y, Chen H, Yin Y, Zhang W. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients. 2019;11(9):2062. https://doi.org/10.3390/nu11092062.

    Article  CAS  PubMed Central  Google Scholar 

  82. Koh A, Molinaro A, Stahlman M, Khan MT, Schmidt C, Manneras-Holm L, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175(4):947–61 e17. https://doi.org/10.1016/j.cell.2018.09.055.

    Article  CAS  PubMed  Google Scholar 

  83. Kootte RS, Levin E, Salojarvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611–9.

    Article  CAS  PubMed  Google Scholar 

  84. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  85. Houghton D, Hardy T, Stewart C, Errington L, Day CP, Trenell MI, et al. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia. 2018;61(8):1700–11. https://doi.org/10.1007/s00125-018-4632-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. •• Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6. https://doi.org/10.1126/science.aao5774This study identified a group of acetate- and butyrate-producing bacteria selectively promoted by dietary fibers. Promotion of this group of SCFA producers not only had a beneficial effect on glucose homeostasis but also kept detrimental bacteria at bay. This study presents a potential novel approach for managing T2D by targeted restoration of specific SCFA producers with dietary fibers.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Q, Yu H, Xiao X, Hu L, Xin F, Yu X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ. 2018;6:e4446. https://doi.org/10.7717/peerj.4446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res. 2017;49(11):886–91. https://doi.org/10.1055/s-0043-119089.

    Article  CAS  PubMed  Google Scholar 

  89. Rao M, Gao C, Xu L, Jiang L, Zhu J, Chen G, et al. Effect of inulin-type carbohydrates on insulin resistance in patients with type 2 diabetes and obesity: a systematic review and meta-analysis. J Diabetes Res. 2019;2019:5101423. https://doi.org/10.1155/2019/5101423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015;22(6):971–82. https://doi.org/10.1016/j.cmet.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Tang H, Zhang C, Zhao Y, Derrien M, Rocher E, et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9(1):1–15. https://doi.org/10.1038/ismej.2014.99.

    Article  CAS  PubMed  Google Scholar 

  92. Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, et al. Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol. 2011;110(3):650–7. https://doi.org/10.1111/j.1365-2672.2010.04922.x.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Wang L, Zhang J, Li Y, He Q, Li H, et al. Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur J Nutr. 2014;53(1):221–32. https://doi.org/10.1007/s00394-013-0519-5.

    Article  CAS  PubMed  Google Scholar 

  94. Cano PG, Santacruz A, Trejo FM, Sanz Y. Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity (Silver Spring). 2013;21(11):2310–21. https://doi.org/10.1002/oby.20330.

    Article  CAS  Google Scholar 

  95. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23(1):107–13. https://doi.org/10.1038/nm.4236.

    Article  CAS  PubMed  Google Scholar 

  97. Sun J, Buys NJ. Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: a meta-analysis of randomised placebo-controlled trials. Br J Nutr. 2016;115(7):1167–77. https://doi.org/10.1017/S0007114516000076.

    Article  CAS  PubMed  Google Scholar 

  98. Ivey KL, Hodgson JM, Kerr DA, Lewis JR, Thompson PL, Prince RL. The effects of probiotic bacteria on glycaemic control in overweight men and women: a randomised controlled trial. Eur J Clin Nutr. 2014;68(4):447–52. https://doi.org/10.1038/ejcn.2013.294.

    Article  CAS  PubMed  Google Scholar 

  99. Mobini R, Tremaroli V, Stahlman M, Karlsson F, Levin M, Ljungberg M, et al. Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2017;19(4):579–89. https://doi.org/10.1111/dom.12861.

    Article  CAS  PubMed  Google Scholar 

  100. Agarwal P, Khatri P, Billack B, Low WK, Shao J. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31(12):3404–14. https://doi.org/10.1007/s11095-014-1430-3.

    Article  CAS  PubMed  Google Scholar 

  101. Pastorino S, Richards M, Pierce M, Ambrosini GL. A high-fat, high-glycaemic index, low-fibre dietary pattern is prospectively associated with type 2 diabetes in a British birth cohort. Br J Nutr. 2016;115(9):1632–42. https://doi.org/10.1017/s0007114516000672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark O. Goodarzi.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Maternal and Childhood Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Goodarzi, M.O. Metabolites Linking the Gut Microbiome with Risk for Type 2 Diabetes. Curr Nutr Rep 9, 83–93 (2020). https://doi.org/10.1007/s13668-020-00307-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-020-00307-3

Keywords

Navigation