Skip to main content
Log in

Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Aim

To evaluate the preventive and therapeutic effects of Lactobacillus casei Zhang on impaired glucose tolerance (IGT) by using fructose-induced hyperinsulinemia rats.

Methods

Rats were fed 25 % fructose solution for hyperinsulinemia with L. casei Zhang for prevention or therapy. Serum levels of insulin, glucagon-like peptide-2 (GLP-2), osteocalcin, malondialdehyde (MDA), total intestinal bile acids and hepatic glycogen contents were determined by assay kits. The major bacteria from feces and liver expression of adiponectin receptor 2 (AdipoR2), liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor gamma (PPAR-γ) and vitamin K epoxide reductase complex subunit 1 mRNA were assessed by RT-PCR. Pancreas injury was evaluated by histological analysis.

Results

Lactobacillus casei Zhang significantly increased numbers of Lactobacillus and Bifidobacterium and decreased Clostridium in the intestine (p < 0.01). Meanwhile, liver glycogen contents were significantly decreased (p < 0.05). In preventive group, accompanied by significantly lower insulin and GLP-2 levels (p < 0.05), L. casei Zhang prevented rats from an increase in oral glucose tolerance area under curve (AUC) which was significant in hyperinsulinemia group (p < 0.05). In therapeutic group, L. casei Zhang administration possessed improved glucose tolerance (p < 0.05), which were associated with increased osteocalcin level (p < 0.01), improved intestinal bile acids secretion (p = 0.060), decreased serum MDA levels (p < 0.05) and upregulation of LXR-α, PPAR-γ and AdipoR2 gene expression, as well as an increase in Bacteroides fragilis (p < 0.05).

Conclusions

Lactobacillus casei Zhang administration exert both preventive and ameliorative effect on oral glucose tolerance AUC in IGT rats but may be via different mechanisms. L. casei Zhang could prevent rats from increased AUC through GLP-2 lowering, while the ameliorative effect in high-fructose-fed post-adolescent rats may be via B. fragilis enriched vitamin K2-dependent osteocalcin mechanism in which AdipoR2, LXR-α and PPAR-γ signaling were involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AdipoR2:

Adiponectin receptor 2

AUC:

Area under curve

GLP-2:

Glucagon-like peptide-2

HFS:

High fructose syrup

IGT:

Impaired glucose tolerance

IR:

Insulin resistance

LXR-α:

Liver X receptor-α

MDA:

Malondialdehyde

OGTT:

Oral glucose tolerance test

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

SD:

Sprague Dawley

VKORC1:

Vitamin K epoxide reductase complex subunit 1

References

  1. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:537–543

    CAS  Google Scholar 

  2. Moeller SM (2009) The effects of high fructose syrup. J Am Coll Nutr 28:619–626

    Article  CAS  Google Scholar 

  3. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sánchez-Lozada LG (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906

    CAS  Google Scholar 

  4. Stanhope KL, Schwarz JM, Keim NL et al (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334

    Article  CAS  Google Scholar 

  5. Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75:473–486

    CAS  Google Scholar 

  6. Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23:62–68

    Article  Google Scholar 

  7. Yadav H, Jain S, Sinha PR (2008) Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. J Dairy Res 75:189–195

    Article  CAS  Google Scholar 

  8. Yadav H, Jain S, Sinha PR (2008) The effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei on gastropathic consequences in diabetic rats. J Med Food 11:62–68

    Article  CAS  Google Scholar 

  9. Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67:1421–1424

    Article  CAS  Google Scholar 

  10. Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, Matsuzaki T, Miyazaki K, Ishikawa F (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol 110:650–657

    Article  CAS  Google Scholar 

  11. Yun SI, Park HO, Kang JH (2009) Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. J Appl Microbiol 107:1681–1686

    Article  CAS  Google Scholar 

  12. Andersson U, Bränning C, Ahrné S, Molin G, Alenfall J, Önning G, Nyman M, Holm C (2010) Probiotics lower plasma glucose in the high-fat fed C57BL/6 J mouse. Benef Microbes 1:189–196

    Article  CAS  Google Scholar 

  13. Ya T, Zhang Q, Chu F, Merritt J, Bilige M, Sun T, Du R, Zhang H (2008) Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain fromkoumiss in Inner Mongolia, China. BMC Immunol 19(9):68

    Article  Google Scholar 

  14. Zhong Z, Zhang W, Du R, Meng H, Zhang H (2012) Effect of Lactobacillus casei Zhang on global gene expression in the liver of hypercholesterolemic rats. Eur J Lipid Sci Technol 114:244–252

    Article  CAS  Google Scholar 

  15. McGuinness Owen P, Alan D (2003) Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care 6:441–448

    CAS  Google Scholar 

  16. Greaves P (2007) Histopathology of preclinical toxicity studies, Third edition: interpretation and relevance in drug safety evaluation. Elsevier, USA, pp 533–534

    Google Scholar 

  17. Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40:495–505

    Article  CAS  Google Scholar 

  18. Zhang Y, Du R, Wang L, Zhang H (2010) The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. Eur Food Res Technol 231:151–158

    Article  CAS  Google Scholar 

  19. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6:e20944

    Article  CAS  Google Scholar 

  20. Xiao Q, Boushey RP, Drucker DJ, Brubaker PL (1999) Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117:99–105

    Article  CAS  Google Scholar 

  21. Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K (2002) Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem 277:31646–31655

    Article  CAS  Google Scholar 

  22. Hsieh J, Longuet C, Maida A, Bahrami J, Xu E, Baker CL, Brubaker PL, Drucker DJ, Adeli K (2009) Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:997–1005

    Article  CAS  Google Scholar 

  23. Federico LM, Naples M, Taylor D et al (2006) Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory elementbinding protein-1c in the fructose-fed hamster intestine. Diabetes 55:1316–1326

    Article  CAS  Google Scholar 

  24. Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5:e9085

    Article  Google Scholar 

  25. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  Google Scholar 

  26. Fukumoto S, Martin TJ (2009) Bone as an endocrine organ. Trends Endocrinol Metab 20:230–236

    Article  CAS  Google Scholar 

  27. Naughton V, McSorley E, Naughton PJ (2011) Changes in calcium status in aged rats fed Lactobacillus GG and Bifidobacterium lactis and oligofructose-enriched inulin. Appl Physiol Nutr Metab 36:161–165

    Article  CAS  Google Scholar 

  28. Choi HJ, Yu J, Choi H, An JH, Kim SW, Park KS, Jang HC, Kim SY, Shin CS (2011) Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care 34:e147

    Article  Google Scholar 

  29. Mathers JC, Fernandez F, Hill MJ, McCarthy PT, Shearer MJ, Oxley A (1990) Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. Br J Nutr 63:639–652

    Article  CAS  Google Scholar 

  30. Yoshida M, Jacques PF, Meigs JB, Saltzman E, Shea MK, Gundberg C, Dawson-Hughes B, Dallal G, Booth SL (2008) Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 31:2092–2096

    Article  CAS  Google Scholar 

  31. Beulens JW, van der A DL, Grobbee DE, Sluijs I, Spijkerman AM, van der Schouw YT (2010) Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33:1699–1705

    Article  CAS  Google Scholar 

  32. Olson RE (1984) The function and metabolism of vitamin K. Ann Rev Nutr 4:281–337

    Article  CAS  Google Scholar 

  33. Shea MK, Gundberg CM, Meigs JB, Dallal GE, Saltzman E, Yoshida M, Jacques PF, Booth SL (2009) Gamma-carboxylation of osteocalcin and insulin resistance in older men and women. Am J Clin Nutr 90:1230–1235

    Article  CAS  Google Scholar 

  34. Yamauchi T, Nio Y, Maki T et al (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med 13:332–339

    Article  CAS  Google Scholar 

  35. López-Bermejo A, Botas-Cervero P, Ortega-Delgado F, Delgado E, García-Gil MM, Funahashi T, Ricart W, Fernández-Real JM (2008) Association of ADIPOR2 with liver function tests in type 2 diabetic subjects. Obesity 16:2308–2313

    Article  Google Scholar 

  36. Nerstedt A, Nilsson EC, Ohlson K, Håkansson J, Thomas Svensson L, Löwenadler B, Svensson UK, Mahlapuu M (2007) Administration of Lactobacillus evokes coordinated changes in the intestinal expression profile of genes regulating energy homeostasis and immune phenotype in mice. Br J Nutr 97:1117–1127

    Article  CAS  Google Scholar 

  37. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64:636–643

    Article  CAS  Google Scholar 

  38. Laffitte BA, Chao LC, Li J, Walczak R, Hummasti S, Joseph SB, Castrillo A, Wilpitz DC, Mangelsdorf DJ, Collins JL, Saez E, Tontonoz P (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci USA 100:5419–5424

    Article  CAS  Google Scholar 

  39. Huang Y, Zheng Y (2010) The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. Br J Nutr 103:473–478

    Article  CAS  Google Scholar 

  40. Zhang Y, Du R, He Q, Li H, Zhang H (2012) Beneficial effects of Lactobacillus casei Zhang on liver lipids of diet-induced hypercholesterolemia rats. Chin Agric Sci (in Chinese). doi:10.3864/j.issn.0578-1752.2012.05.015

  41. Takebayashi K, Aso Y, Inukai T (2010) Role of bile acid sequestrants in the treatment of type 2 diabetes. World J Diabetes 1:146–152

    Article  Google Scholar 

  42. Olefsky JM, Saltiel AR (2000) PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab 11:362–368

    Article  CAS  Google Scholar 

  43. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18:461–467

    Article  CAS  Google Scholar 

  44. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG et al (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112

    Article  CAS  Google Scholar 

  45. Zhao X, Higashikawa F, Noda M, Kawamura Y, Matoba Y, Kumagai T, Sugiyama M (2012) The obesity and fatty liver are reduced by plant-derived pediococcus pentosaceus LP28 in high fat diet-induced obese mice. PLoS One 7:e30696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dongmin Liu from Fralin Life Science Institute of Virgina Tech for revising this article. This research was supported by National Natural Science Foundation of China (Grant No. 31025019), the Innovation Team Development of the Ministry of Education of China (Grant No. IRT0967), National Basic Research Program of China (973 Program) (2012CB720802), Hi-Tech Research and Development Program of China (863 Planning, Grant No. 2011AA100901, 2011AA100902) and the Earmarked Fund for Modern Agro-industry Technology Research System (Grant No. nycytx-0501).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, L., Zhang, J. et al. Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur J Nutr 53, 221–232 (2014). https://doi.org/10.1007/s00394-013-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0519-5

Keywords

Navigation