Skip to main content
Log in

Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum L.) is one of the most important and popular vegetables worldwide. A wide range of tomato cultivars with different colored fruits is presently available. The purple peel of tomato fruit is due to the accumulation anthocyanin pigments, which are beneficial to both plants and humans. Cultivated tomatoes normally do not make anthocyanin in their fruit peel, but there are some wild relatives of cultivated tomato like Solanum chilense, S. habrochaites, S. cheesmanii, and S. lycopersicoides that do produce anthocyanins in their fruits. In this study, the purple fruit color was obtained by crossing ‘OSU blue’ (blue fruit) and ‘Purple mini’ (brown fruit) and subsequent self-pollination. Anthocyanins are produced via the flavonoid pathway and are regulated by the transcriptional complex of MYB, bHLH, and WD40 repeats transcription factors. We determined the expression profiles of genes related to anthocyanin biosynthesis in tomato genotypes with distinct fruit colors by qRT-PCR. Both the early and late biosynthetic genes of the anthocyanin pathway were up-regulated in the peels of purple tomato fruits, except Sl5GT. Moreover, the expression of the regulatory genes SlANT1 and SlAN1 was dramatically increased in the peels of purple tomato fruits. These results indicate that SlANT1 and SlAN1 might play an important role on anthocyanin biosynthesis in the peels of purple-fruited tomatoes via up-regulation of structural genes in the anthocyanin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Aal EM, Young JC, Rabalski I (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem 54:4696–4704

    Article  CAS  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  PubMed  CAS  Google Scholar 

  • Al-Sane K, Povero G, Perata P (2011) Anthocyanin tomato mutants: overview and characterization of an anthocyanin-less somaclonal mutant. Plant Biosyst 145:436–444

    Article  Google Scholar 

  • Ballester et al (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Barros L, Dueñas M, Pinela J, Carvalho AM, Buelga CS, Ferreira IC (2012) Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers’ varieties in northeastern Portugal home gardens. Plant Foods Hum Nutr 67:229–234

    Article  PubMed  CAS  Google Scholar 

  • Boches PS (2009) Breeding tomato for increased fruit phenolics. Ph.D. Thesis, Oregon State University, Corvallis 2009

  • Bovy A, Schijlen E, Hall RD (2007) Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics 3:399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burton-Freeman B, Sesso HD (2014) Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv Nutr 5:457–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butelli et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat biotechnolo 26:1301–1308

    Article  CAS  Google Scholar 

  • Cheung AY, McNellis T, Piekos B (1993) Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. Plant Physiol 101:1223–1229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu L, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236:1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conn S, Curtin C, Bezier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59:3621–3634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgiev C (1972) Anthocyanin fruit (Af). Tomato Genet Coop Rpt 22:10

    Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  PubMed  CAS  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14:237–241

    Article  PubMed  CAS  Google Scholar 

  • Gould KS (2004) Nature’s Swiss Army Knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320

    Article  PubMed  PubMed Central  Google Scholar 

  • He Q, Zhang Z, Zhang L (2015) Anthocyanin accumulation, antioxidant ability and stability, and a transcriptional analysis of anthocyanin biosynthesis in purple heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis). J Agric Food Chem 64:132–145

    Article  PubMed  CAS  Google Scholar 

  • Holick CN, Michaud DS, Stolzenberg-Solomon R, Mayne ST, Pietinen P, Taylor PR, Virtamo J, Albanes D (2002) Dietary carotenoids, serum beta-carotene, and retinol and risk of lung cancer in the alpha-tocopherol, beta-carotene cohort study. Am J Epidemiol 156:536–547

    Article  PubMed  Google Scholar 

  • Holzapfel NP, Holzapfel BM, Champ S, Feldthusen J, Clements J, Hutmacher DW (2013) The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 14:14620–14646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones CM, Mes P, Myers JR (2003) Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. J Hered 94:449–456

    Article  PubMed  CAS  Google Scholar 

  • Kiferle C, Fantini E, Bassolino L, Povero G, Spelt C, Buti S, Giuliano G, Quattrocchio F, Koes R, Perata P (2015) Tomato R2R3-MYB proteins SlANT1 and SlAN2: same protein activity, different roles. PLoS ONE 10:e0136365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Lim S, Song J, Kim D, Kim JK, Lee J, Kim Y, Ha S (2016) Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1. Plant Cell Rep 35:641–653

    Article  PubMed  CAS  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mes PJ, Boches P, Myers JR, Durst R (2008) Characterization of tomatoes expressing anthocyanin in the fruit. J Am Soc Hortic Sci 133:262–269

    Google Scholar 

  • Paran I, van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852

    Article  PubMed  CAS  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  PubMed  CAS  Google Scholar 

  • Povero G, Gonzali S, Bassolino L, Mazzucato A, Perata P (2011) Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. J Plant Physiol 168:270–279

    Article  PubMed  CAS  Google Scholar 

  • Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913–929

    Article  PubMed  CAS  Google Scholar 

  • Rick C, Reeves A, Zobel R (1968) Inheritance and linkage relations of four new mutants. Tomato Genet Coop Rep 18:34–35

    Google Scholar 

  • Rick C, Cisneros P, Chetelat R, DeVerna J (1994) Abg-a gene on chromosome 10 for purple fruit derived from S. lycopersicoides. Rep Tomato Genet Coop 44:29–30

    Google Scholar 

  • Ryan KG, Swinny EE, Markham KR, Winefield C (2002) Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59:23–32

    Article  PubMed  CAS  Google Scholar 

  • Sapir M, Oren-Shamir M, Ovadia R, Reuveni M, Evenor D, Tadmor Y, Nahon S, Shlomo H, Chen L, Meir A, Levin I (2008) Molecular aspects of anthocyanin fruit tomato in relation to high pigment-1. J Hered 99:292–303

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG, Dubos C, De La Fuente Romero, Irene Houwelingen AM, Vos RC, Jonker HH, Xu W, Routaboul J, Lepiniec L, Bovy AG (2013) Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol 197:454–467

    Article  PubMed  CAS  Google Scholar 

  • Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307

    Article  PubMed  CAS  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen X, Zhao K, Liu L, Zhang K, Yuan H, Liao X, Wang Q, Guo X, Li F, Li T (2014) A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol 55:862–880

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) Anthocyanin1 of Petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens M, Rick C (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement, pp 35–105

  • Stommel JR, Lightbourn GJ, Winkel BS, Griesbach RJ (2009) Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J Am Soc Hortic Sci 134:244–251

    Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Torres CA, Davies NM, Yanez JA, Andrews PK (2005) Disposition of selected flavonoids in fruit tissues of various tomato (Lycopersicon esculentum Mill.) genotypes. J Agric Food Chem 53:9536–9543

    Article  PubMed  CAS  Google Scholar 

  • Veerappan K, Jung HJ, Hwang I, Kho KH, Chung MY, Nou IS (2016) Sequence variation in SlMYB12. Hortic Environ Biotechnol 57:274–279

    Article  CAS  Google Scholar 

  • Wada T, Kunihiro A, Tominaga-Wada R (2014) Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) control tomato (Solanum lycopersicum) anthocyanin biosynthesis. PLoS ONE 9:e109093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitney KD, Lister CE (2004) Fruit colour polymorphism in Acacia ligulata: seed and seedling performance, clinal patterns, and chemical variation. Evol Ecol 18:165–186

    Article  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Chiu L, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang Y, Dou Y, Li W, Wang S, Shi W, Sun Y, Zhang Z (2017) Single nucleotide mutation in FvMYB10 may lead to the yellow fruit in Fragaria vesca. Mol Breed 37:35

    Article  CAS  Google Scholar 

  • Zuluaga DL, Gonzali S, Loreti E, Pucciariello C, Degl’Innocenti E, Guidi L, Alpi A, Perata P (2008) Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol 35:606–618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Golden Seed Project (Center for Horticultural Seed Development, Grant No. 213007-05-2-CG100) of the Ministry of Agriculture, Food and Rural affairs in the Republic of Korea (MAFRA). We thank Hyundai Seed Co. Ltd. and Gana Seed Co. Ltd., Republic of Korea for providing plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ill-Sup Nou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, SI., Rahim, M.A., Afrin, K.S. et al. Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato. Hortic. Environ. Biotechnol. 59, 435–445 (2018). https://doi.org/10.1007/s13580-018-0046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-018-0046-7

Keywords

Navigation