Skip to main content
Log in

Regulation of anthocyanin biosynthesis in peach fruits

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main Conclusion

MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located.

Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ANR:

anthocyanidin reductase

bHLH:

basic helix-loop-helix

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3-hydroxylase

LAR:

Leucoanthocyanidin reductase

LDOX:

Leucoanthocyanidin dioxygenase

PA:

Proanthocyanidin

TF:

Transcription factor

UFGT:

UDP-flavonoid glucosyl transferase

References

  • Andreotti C, Ravaglia D, Ragaini A, Costa G (2008) Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Ann Appl Biol 153:11–23

    Article  CAS  Google Scholar 

  • Atchley WR, Terhalle W, Dress A (1999) Positional dependence, cliques, and predictive motifs in the bHLH protein domain. J Mol Evol 48:501–516

    Article  PubMed  CAS  Google Scholar 

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15:2497–2502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Linstead P, Dolan L, Haseloff J (1998) Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol 194:226–234

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol Biol 32:565–569

    Article  PubMed  CAS  Google Scholar 

  • Brueggemann J, Weisshaar B, Sagasser M (2010) A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Rep 29:285–294

    Article  PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carey CC, Strahle JT, Selinger DA, Chandler VL (2004) Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. Plant Cell 16:450–464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chiu LW, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41:899–918

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434

    Article  PubMed  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Escribano-Bailón MT, Santos-Buelga C, Rivas-Gonzalo JC (2004) Anthocyanins in cereals. J Chromatography A 1054:129–141

    Article  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  PubMed  Google Scholar 

  • Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Am Soc Hort Sci 130:24–33

    CAS  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E, Athma P, Peterson T (1991) Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci USA 88:4587–4591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  PubMed  CAS  Google Scholar 

  • Heppel SC, Jaffé FW, Takos AM, Schellmann S, Rausch T, Walker AR, Bogs J (2013) Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Mol Biol 82:457–471

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kim CY, Ahn YO, Kim SH, Kim Y, Lee H, Catanach AS, Jacobs JM, Conner AJ, Kwak S (2010) The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Physiol Plant 139:229–240

    Article  PubMed  CAS  Google Scholar 

  • Klempnauer K, Gonda TJ, Michael Bishop J (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31:453–463

    Article  PubMed  CAS  Google Scholar 

  • Klempnauer K, Bonifer C, Sippel AE (1986) Identification and characterization of the protein encoded by the human c-myb proto-oncogene. EMBO J 5:1903

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4:1229–1236

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lancaster J, Dougall DK (1992) Regulation of skin color in apples. Crit Rev Plant Sci 10:487–502

    Article  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  PubMed  CAS  Google Scholar 

  • Li L, Ban Z, Li X, Wu M, Wang A, Jiang Y, Jiang Y (2012) Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS ONE 7:e46070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T, Espley R, Hellens R, Allan A (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    Article  PubMed  CAS  Google Scholar 

  • Masia A, Zanchin A, Rascio N, Ramina A (1992) Some biochemical and ultrastructural aspects of peach fruit development. J Am Soc Hort Sci 117:808–815

    CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco D, Wagoner W, Lightner J (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem 51:3560–3563

    Article  PubMed  CAS  Google Scholar 

  • Matus J, Poupin M, Cañón P, Bordeu E, Alcalde J, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72:607–620

    Article  PubMed  CAS  Google Scholar 

  • Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737

    Article  PubMed  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative Real-Time RT-PCR. Biotechniques 32:1372–1379

    PubMed  CAS  Google Scholar 

  • Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta (BBA)-Gene Struct Expr 1218:129–135

    Article  CAS  Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y, Hirata Z, Sarai A (1995) Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nat Struct Mol Biol 2:309–320

    Article  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson P, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553

    PubMed  CAS  PubMed Central  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  PubMed  CAS  Google Scholar 

  • Petroni K, Cominelli E, Consonni G, Gusmaroli G, Gavazzi G, Tonelli C (2000) The developmental expression of the maize regulatory gene Hopi determines germination-dependent anthocyanin accumulation. Genetics 155:323–336

    PubMed  CAS  PubMed Central  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J, Koes R (1999) Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  PubMed  CAS  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13:68

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shen Z, Confolent C, Lambert P, Poëssel J, Quilot-Turion B, Yu M, Ma R, Pascal T (2013) Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genom 9:1435–1446

    Article  Google Scholar 

  • Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C (2008) Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56:4855–4873

    Article  PubMed  CAS  Google Scholar 

  • Sompornpailin K, Makita Y, Yamazaki M, Saito K (2002) A WD-repeat-containing putative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant Mol Biol 50:485–495

    Article  PubMed  CAS  Google Scholar 

  • Spolaore S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 52:845–850

    PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tedesco I, Luigi Russo G, Nazzaro F, Russo M, Palumbo R (2001) Antioxidant effect of red wine anthocyanins in normal and catalase-inactive human erythrocytes. J Nutr Biochem 12:505–511

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-β-d-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130

    PubMed  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet MGG 220:245–250

    Article  CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  PubMed  CAS  Google Scholar 

  • Vizzotto G, Pinton R, Varanini Z, Costa G (1996) Sucrose accumulation in developing peach fruit. Physiol Plant 96:225–230

    Article  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Welch CR, Wu Q, Simon JE (2008) Recent advances in anthocyanin analysis and characterization. Curr Anal Chem 4:75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xia M, Ling W, Zhu H, Wang Q, Ma J, Hou M, Tang Z, Li L, Ye Q (2007) Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution. Arterioscler Thromb Vasc Biol 27:519–524

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hort Sci 74:204–213

    Article  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. Patrizia Torrigiani, Department of Fruit Tree and Woody Plant Sciences, University of Bologna, Italy for providing primers of peach anthocyanin biosynthetic genes and Dr. Ian Moore, Department of Plant Sciences, University of Oxford, for providing vectors of the pOp/LhG4 system. This research work was supported by Ministero delle Politiche Agricole Alimentari e Forestali-Italy through the project ‘DRUPOMICS’ (Grant DM14999/7303/08) and University of Padova (Grant no. CPDA072133/07). MAR was supported by a “Fondazione CARIPARO” fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Trainotti.

Additional information

Special topic: Anthocyanins. Guest editor: Stefan Martens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2014_2078_MOESM1_ESM.jpg

Phylogenetic tree showing relationships between Arabidopsis and peach MYB TFs. Green solid squares: Arabidopsis (given as TAIR nos) anthocyanin promoting MYB TFs; red solid circles: peach (given as Phytozome nos) MYB10-like TFs located on pseudomolecule 3; black solid circles: peach MYB TFs named according to Ravaglia et al. (2013). Please note that ppa016711m (MYB10.2) was previously named MYB10 by Lin-Wang et al. 2010 and by Ravaglia et al., 2013 and correspond to GenBank record EU155160. Phylogenetic and molecular evolutionary analyses were conducted using neighbor-joining method and 1000 bootstrap replicates using MEGA version 5. Numbers close to the nodes indicates bootstrap values (JPEG 8973 kb)

425_2014_2078_MOESM2_ESM.tif

Microarray expression profiles of MYB genes in different stages of seed and mesocarp development in peach cultivar. ‘Fantasia’. The highest value for each gene has been arbitrarily set to 100 (blue), and the others accordingly (0 = white). Val MAX: maximum expression value; F_m: mean expression in peach flowers at anthesis while 1 to 6 are various developmental stages of seed (S) and mesocarp (M), with 1 and 2 covering stage S1, 3 and 4 stage S2, 5 stage S3 and 6 stage S4 of peach development. ‘na’ indicates no expression values (TIFF 94 kb)

425_2014_2078_MOESM3_ESM.tif

Expression of six peach MYB10 like genes in anthocyanin-accumulating organs. Expression levels were tested in S4 (ripe) fruit peel, mature and senescing leaf and flower by qRT-PCR. The expression values of the target genes were normalized by the expression values of the PpN1 gene, used as internal standard. Error bars shown are ± SE from the means of triplicates (TIFF 13230 kb)

425_2014_2078_MOESM4_ESM.jpg

Phylogenetic tree showing relationships between Arabidopsis and peach bHLH TFs. Green solid squares: Arabidopsis (given as TAIR nos) bHLH TFs acting as co-regulators of MYB TFs for the regulation of anthocyanin production; red solid circles: peach (given as Phytozome nos) bHLH-like TFs belonging to the same clade of the Arabidopsis co-regulators. Phylogenetic and molecular evolutionary analyses were conducted using neighbor-joining method and 1000 bootstrap replicates using MEGA version 5 (JPEG 9464 kb)

425_2014_2078_MOESM5_ESM.tif

Microarray expression profiles of bHLH genes in different stages of seed and mesocarp development in peach cultivar. ‘Fantasia’. The highest value for each gene has been arbitrarily set to 100 (blue), and the others accordingly (0 = white). Val MAX: maximum expression value; F_m: mean expression in peach flowers at anthesis while 1 to 6 are various developmental stages of seed (S) and mesocarp (M), with 1 and 2 covering stage S1, 3 and 4 stage S2, 5 stage S3 and 6 stage S4 of peach development (TIFF 61 kb)

425_2014_2078_MOESM6_ESM.tif

Microarray expression profile of WD40 gene in different stages of seed and mesocarp development in peach cultivar. ‘Fantasia’. The highest value has been arbitrarily set to 100 (blue), and the others accordingly (0 = white). Val MAX: maximum expression value; F_m: mean expression in peach flowers at anthesis while 1 to 6 are various developmental stages of seed (S) and mesocarp (M), with 1 and 2 covering stage S1, 3 and 4 stage S2, 5 stage S3 and 6 stage S4 of peach development (TIFF 37 kb)

425_2014_2078_MOESM7_ESM.tif

Transcript level of peach MYB10 s and bHLHs detected by qRT-PCR from agroinfiltrated tobacco leaves. The expression values of the target genes were normalized by the expression values of the GUS gene, used as internal standard. Error bars shown are ± SE from the means of triplicates (TIFF 13870 kb)

425_2014_2078_MOESM8_ESM.tif

Total anthocyanin content in agroinfiltrated peach mesocarp. M1, M2, M3, B1, B2, B3 and S indicate plasmids for the expression of MYB10.1, MYB10.2, MYB10.3, bHLH3, bHLH33, GL3 and 35S::Lhg4, respectively. Error bars shown are ± SD of the means of three replicates (TIFF 7567 kb)

425_2014_2078_MOESM9_ESM.tif

Protein sequence alignment of peach MYB10 TFs with other MYB TFs that are known to be involved in anthocyanin and PA biosynthesis from other species. Two highly conserved MYB domains were shown above the alignment. The amino acids highlighted with a circle (R in the R2-MYB domain, V and A in the R3-MYB domain) are the three key amino acid residues mediating the specificity of either the anthocyanin or PA pathway (Heppel et al. 2013). The amino acid motif “[DE]Lx2[RK]x3Lx6Lx3R” below the alignment indicates the interacting site for bHLH TFs. The protein sequences have the same accession nos as described in Fig. 3 but for Arabidopsis AtMYB123 (AT5G35550); grape VvMYBPA1 (CAJ90831); peach MYB123 (ppa023768m) and MYBPA1 (ppa009439m) (TIFF 17095 kb)

425_2014_2078_MOESM10_ESM.txt

DNA and protein sequence alignments for the cloned MYB10 s and bHLHs with the reference sequence of the peach genome (www.phytozome.net) (TXT 43 kb)

Supplementary material 11 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, M.A., Busatto, N. & Trainotti, L. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240, 913–929 (2014). https://doi.org/10.1007/s00425-014-2078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2078-2

Keywords

Navigation