Skip to main content

Advertisement

Log in

Biosynthesis and regulation of anthocyanin pathway genes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.

Key points

Factors affecting the regulation of anthocyanins

Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins

Microbial cell factories can be used to produce large amounts of anthocyanins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383

    Article  CAS  Google Scholar 

  • Ajikumar PK, Xiao W-H, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen ØM, Jordheim M (2010) 3.16-Chemistry of flavonoid-based colors in plants. Compr Nat Prod II Elsevier 547–614

  • Austin MB, Bowman ME, Ferrer J-L, Schröder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, van der Meer IM, Sibbesen O, Broekgaarden M, Qvist I, Mikkelsen JD, Hall RD (2007) Microbial production of natural raspberry ketone. Biotechnol J Healthc Nutr Technol 2:1270–1279

    CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno JM, Sáez-Plaza P, Ramos-Escudero F, Jiménez AM, Fett R, Asuero AG (2012) Analysis and antioxidant capacity of anthocyanin pigments. Part II: chemical structure, color, and intake of anthocyanins. Crit Rev Anal Chem 42:126–151

    Article  CAS  Google Scholar 

  • Castañeda-Ovando A, de Lourdes P-H, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Cevallos-Casals BA, Cisneros-Zevallos L (2003) Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweetpotato. J Agric Food Chem 51:3313–3319

    Article  CAS  PubMed  Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27:2545–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62

    Article  CAS  PubMed  Google Scholar 

  • Chouhan S, Sharma K, Zha J, Guleria S, Koffas MA (2017) Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol 8:2259

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortez R, Luna-Vital DA, Margulis D, Gonzalez de Mejia E (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16:180–198

    Article  CAS  PubMed  Google Scholar 

  • Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson KE (1994) Modification of flower color in florist’s chrysanthemum: production of a white–flowering variety through molecular genetics. Biotechnology 12:268–271

    Article  CAS  PubMed  Google Scholar 

  • Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MA (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Factories 16:1–14

    Article  Google Scholar 

  • Davies KM (2008) Modifying anthocyanin production in flowers. In: Anthocyanins. Springer, pp. 49–80

  • De Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA (2020) The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu Rev Food Sci Technol 11:145–182

    Article  PubMed  Google Scholar 

  • de Pascual-Teresa S, Sanchez-Ballesta MT (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

    Article  Google Scholar 

  • Delgado-Vargas F, Paredes-Lopez O (2002) Natural colorants for food and nutraceutical uses. CRC Press

    Book  Google Scholar 

  • Dincheva I, Badjakov I, Kondakova V (2015) Metabolic engineering of bioactive compounds in berries. Biotechnol Bioact Compd Sources Appl 463

  • Du Y, Yang B, Yi Z, Hu L, Li M (2020) Engineering Saccharomyces cerevisiae coculture platform for the production of flavonoids. J Agric Food Chem 68:2146–2154

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H (2017) Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Factories 16:1–10

    Article  CAS  Google Scholar 

  • Dudnik A, Almeida AF, Andrade R, Avila B, Bañados P, Barbay D, Bassard J-E, Benkoulouche M, Bott M, Braga A (2018) BacHBerry: BACterial hosts for production of Bioactive phenolics from bERRY fruits. Phytochem Rev 17:291–326

    Article  CAS  Google Scholar 

  • Durbin ML, McCaig B, Clegg MT (2000) Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Mol Evol 79–92

  • Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M (2018) De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 18:foy046

    Article  Google Scholar 

  • Ekici L, Simsek Z, Ozturk I, Sagdic O, Yetim H (2014) Effects of temperature, time, and pH on the stability of anthocyanin extracts: prediction of total anthocyanin content using nonlinear models. Food Anal Methods 7:1328–1336

    Article  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenger J-A, Roux H, Robbins RJ, Collins TM, Dangles O (2021) The influence of phenolic acyl groups on the color of purple sweet potato anthocyanins and their metal complexes. Dyes Pigments 185:108792

    Article  CAS  Google Scholar 

  • Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, Eisenach C, Zarrouk O, Vialet S, Marlin T, Chaves MM (2013) ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell 25:1840–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Lyu Y, Zeng W, Du G, Zhou J, Chen J (2019) Efficient biosynthesis of (2 S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J Agric Food Chem 68(4):1015–1021

  • Gargouri M, Manigand C, Mauge C, Granier T, Langlois d’Estaintot B, Cala O, Pianet I, Bathany K, Chaudiere J, Gallois B (2009) Structure and epimerase activity of anthocyanidin reductase from Vitis vinifera. Acta Crystallogr D Biol Crystallogr 65:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S (2002) Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci 162:867–872

    Article  CAS  Google Scholar 

  • Halbwirth H, Kahl S, Jäger W, Reznicek G, Forkmann G, Stich K (2006) Synthesis of (14C)-labeled 5-deoxyflavonoids and their application in the study of dihydroflavonol/leucoanthocyanidin interconversion by dihydroflavonol 4-reductase. Plant Sci 170:587–595

    Article  CAS  Google Scholar 

  • He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, Wang J, Reeves MJ, Duan C-Q (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X-Z, Li W-S, Blount JW, Dixon RA (2008) Regioselective synthesis of plant (iso)flavone glycosides in Escherichia coli. Appl Microbiol Biotechnol 80:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helariutta Y, Elomaa P, Kotilainen M, Seppänen P, Teeri TH (1993) Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae). Plant Mol Biol 22:183–193

    Article  CAS  PubMed  Google Scholar 

  • Hernández R, Eguchi T, Deveci M, Kubota C (2016) Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci Hortic 213:270–280

    Article  Google Scholar 

  • Hirner AA, Veit S, Seitz HU (2001) Regulation of anthocyanin biosynthesis in UV-A-irradiated cell cultures of carrot and in organs of intact carrot plants. Plant Sci 161:315–322

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D-G, Sun C-H, Ma Q-J, You C-X, Cheng L, Hao Y-J (2016) MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiol 170:1315–1330

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Du J, Du L, Luo Q, Xiong J (2020) Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. J Funct Foods 65:103725

    Article  CAS  Google Scholar 

  • Huang Y, Gou J, Jia Z, Yang L, Sun Y, Xiao X, Song F, Luo K (2012) Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa. PLoS One 7:e30364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. MBio 8

  • Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J (2016) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kerio LC, Wachira FN, Wanyoko JK, Rotich MK (2012) Characterization of anthocyanins in Kenyan teas: extraction and identification. Food Chem 131:31–38

    Article  CAS  Google Scholar 

  • Kiferle C, Fantini E, Bassolino L, Povero G, Spelt C, Buti S, Giuliano G, Quattrocchio F, Koes R, Perata P (2015) Tomato R2R3-MYB proteins SlANT1 and SlAN2: same protein activity, different roles. PLoS One 10:e0136365

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Kim B-G, Lee Y, Ryu JY, Lim Y, Hur H-G, Ahn J-H (2005) Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J Biotechnol 119:155–162

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJ, Pronk JT, Daran J-M (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:1–15

    Article  Google Scholar 

  • Kriventsov VI, Arendt NK (1981) Anthocyanins of pomegranate juice. T Gos Nikits Bot Sad 83:110–116

    Google Scholar 

  • Lamikanra O (1989) Anthocyanins of Vitis rotundifolia hybrid grapes. Food Chem 33:225–237

    Article  CAS  Google Scholar 

  • Lanza AM, Curran KA, Rey LG, Alper HS (2014) A condition-specific codon optimization approach for improved heterologous gene expression in Saccharomyces cerevisiae. BMC Syst Biol 8:1–10

    Article  Google Scholar 

  • Leonard E, Yan Y, Fowler ZL, Li Z, Lim C-G, Lim K-H, Koffas MA (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265

    Article  CAS  PubMed  Google Scholar 

  • Levisson M, Patinios C, Hein S, de Groot PA, Daran J-M, Hall RD, Martens S, Beekwilder J (2018) Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Factories 17:1–16

    Article  Google Scholar 

  • Li C, Wu J, Hu K-D, Wei S-W, Sun H-Y, Hu L-Y, Han Z, Yao G-F, Zhang H (2020) PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Hortic Res 7:1–12

    PubMed  PubMed Central  Google Scholar 

  • Li H, Flachowsky H, Fischer TC, Hanke M-V, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Li H, Gao S, Zhang S, Zeng W, Zhou J (2021) Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae. J Biotechnol 325:119–127

    Article  CAS  PubMed  Google Scholar 

  • Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210:905–921

    Article  CAS  PubMed  Google Scholar 

  • Li X-J, Hou J-H, Zhang G-L, Liu R-S, Yang Y-G, Hu Y-X, Lin J-X (2004) Comparison of anthocyanin accumulation and morpho-anatomical features in apple skin during color formation at two habitats. Sci Hortic 99:41–53

    Article  CAS  Google Scholar 

  • Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MA (2015) Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol 81:6276–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang KUI, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagne D, Rowan DD, Troggio M (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    Article  PubMed  Google Scholar 

  • Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang L, Zhang J, Yu B, Wang J, Wang D (2017) The MYB transcription factor StMYBA1 from potato requires light to activate anthocyanin biosynthesis in transgenic tobacco. J Plant Biol 60:93–101

    Article  CAS  Google Scholar 

  • Liu Z, Zhang Y, Wang J, Li P, Zhao C, Chen Y, Bi Y (2015) Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci 238:64–72

    Article  CAS  PubMed  Google Scholar 

  • Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A (2017) Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol 58:1431–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucioli S (2012) Anthocyanins: mechanism of action and therapeutic efficacy. Med Plants Antioxid Agents Underst Their Mech Action Ther Effic 27–57

  • Lyu X, Zhao G, Ng KR, Mark R, Chen WN (2019) Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J Agric Food Chem 67:5596–5606

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Hoecker U (2015) COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav 10:e970440

    Article  PubMed  Google Scholar 

  • Makus DJ, DJ M (1973) Characterization of anthocyanins during ripening of fruit of Vaccinium corymbosum, L. cv. Wolcott

  • Marchev AS, Yordanova ZP, Georgiev MI (2020) Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 40:443–458

    Article  CAS  PubMed  Google Scholar 

  • Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178

    Article  CAS  PubMed  Google Scholar 

  • Martinsen BK, Aaby K, Skrede G (2020) Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem 316:126297

    Article  CAS  PubMed  Google Scholar 

  • Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazza G (2018) Anthocyanins in fruits, vegetables, and grains. CRC Press

    Book  Google Scholar 

  • Mazza G, Miniati E (1993) Grapes. Anthocyanins Fruits Veg Grains 149–199

  • Mazzucato A, Willems D, Bernini R, Picarella ME, Santangelo E, Ruiu F, Tilesi F, Soressi GP (2013) Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation. Plant Physiol Biochem 72:125–133

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverria J (2019) The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol 10:1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Molaeafard S, Jamei R, Marjani AP (2021) Co-pigmentation of anthocyanins extracted from sour cherry (Prunus cerasus L.) with some organic acids: color intensity, thermal stability, and thermodynamic parameters. Food Chem 339:128070

    Article  CAS  PubMed  Google Scholar 

  • Movahed N, Pastore C, Cellini A, Allegro G, Valentini G, Zenoni S, Cavallini E, D’Incà E, Tornielli GB, Filippetti I (2016) The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J Plant Res 129:513–526

    Article  CAS  PubMed  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, van Ric De Vos CH, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Fukuchi-Mizutani M, Miyazaki K, Suzuki K, Tanaka Y (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–17

    Article  CAS  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S, Nishihara M (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazareth MS, Shreelakshmi SV, Rao PJ, Shetty NP (2021) Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: comparison of degradation kinetics. Food Chem 359:129876

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Zhang G, Zhang W, Goltsev V, Sun S, Wang J, Li P, Ma F (2017) Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Sci Rep 7:1–16

    Article  Google Scholar 

  • Oren-Shamir M (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci 177:310–316

    Article  CAS  Google Scholar 

  • Palmer CM, Miller KK, Nguyen A, Alper HS (2020) Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metab Eng 57:174–181

    Article  CAS  PubMed  Google Scholar 

  • Pandey RP, Parajuli P, Koffas MA, Sohng JK (2016) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662

    Article  CAS  PubMed  Google Scholar 

  • Passeri V, Koes R, Quattrocchio FM (2016) New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Front Plant Sci 7:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Pina F, Melo MJ, Laia CA, Parola AJ, Lima JC (2012) Chemistry and applications of flavylium compounds: a handful of colours. Chem Soc Rev 41:869–908

    Article  CAS  PubMed  Google Scholar 

  • Poudel PR, Azuma A, Kobayashi S, Koyama K, Goto-Yamamoto N (2021) VvMYBAs induce expression of a series of anthocyanin biosynthetic pathway genes in red grapes (Vitis vinifera L.). Sci Hortic 283:110121

    Article  CAS  Google Scholar 

  • Putta S, Yarla NS, Peluso I, Tiwari DK, Reddy GV, Giri PV, Kumar N, Malla R, Rachel V, Bramhachari PV (2017) Anthocyanins: Multi-target agents for prevention and therapy of chronic diseases. Curr Pharm Des 23:6321–6346

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, Forster J, Nielsen J, Borodina I (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Ruta LL, Farcasanu IC (2019) Anthocyanins and anthocyanin-derived products in yeast-fermented beverages. Antioxidants 8:182

    Article  CAS  PubMed Central  Google Scholar 

  • Saad KR, Kumar G, Giridhar P, Shetty NP (2018) Differential expression of anthocyanin biosynthesis genes in Daucus carota callus culture in response to ammonium and potassium nitrate ratio in the culture medium. 3 Biotech 8:1–11

    Article  CAS  Google Scholar 

  • Saad KR, Parvatam G, Shetty NP (2018) Medium composition potentially regulates the anthocyanin production from suspension culture of Daucus carota. 3 Biotech 8:1–13

    Article  CAS  Google Scholar 

  • Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400

    Article  CAS  PubMed  Google Scholar 

  • Schwinn K, Miosic S, Davies K, Thill J, Gotame TP, Stich K, Halbwirth H (2014) The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins. Planta 240:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Scudamore-Smith PD, Hooper RL, McLaran ED (1990) Color and phenolic changes of Cabernet Sauvignon wine made by simultaneous yeast/bacterial fermentation and extended pomace contact. Am J Enol Vitic 41:57–67

    CAS  Google Scholar 

  • Seitz C, Vitten M, Steinbach P, Hartl S, Hirsche J, Rathje W, Treutter D, Forkmann G (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824–833

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Cao S, Chen W, Yang Z (2014) Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Sci Hortic 179:98–102

    Article  CAS  Google Scholar 

  • Shi Q, Li X, Du J, Li X (2019) Anthocyanin synthesis and the expression patterns of bHLH transcription factor family during development of the Chinese jujube fruit (Ziziphus jujuba Mill.). Forests 10:346

    Article  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy (iso)flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shipp J, Abdel-Aal E-SM (2010) Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci J 4

  • Shrestha B, Pandey RP, Darsandhari S, Parajuli P, Sohng JK (2019) Combinatorial approach for improved cyanidin 3-O-glucoside production in Escherichia coli. Microb Cell Factories 18:1–15

    Article  Google Scholar 

  • Simões C, Albarello N, Castro TC, Mansur E (2012) Production of anthocyanins by plant cell and tissue culture strategies. Biotechnol Prod Plant Second Metab 1st Ed Orhan IE Ed 67–86

  • Simões C, Bizarri CHB, da Silva CL, de Castro TC, Coutada LCM, da Silva AJR, Albarello N, Mansur E (2009) Anthocyanin production in callus cultures of Cleome rosea: modulation by culture conditions and characterization of pigments by means of HPLC-DAD/ESIMS. Plant Physiol Biochem 47:895–903

    Article  PubMed  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30:1265–1286

    Article  CAS  PubMed  Google Scholar 

  • Solopova A, van Tilburg AY, Foito A, Allwood JW, Stewart D, Kulakauskas S, Kuipers OP (2019) Engineering Lactococcus lactis for the production of unusual anthocyanins using tea as substrate. Metab Eng 54:160–169

    Article  CAS  PubMed  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  CAS  PubMed  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38

    Article  CAS  Google Scholar 

  • Sun H, Li Y, Feng S, Zou W, Guo K, Fan C, Si S, Peng L (2013) Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 430:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Takeda K, Ohnishi T (1991) Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaurea cyanus cells in culture. Plant Cell Physiol 32:541–547

    CAS  Google Scholar 

  • Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Holton TA, Higgins E, Kusumi T (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene. Plant Cell Physiol 36:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Kong WF, Pan QH, Zhan JC, Wen PF, Chen JY, Wan SB, Huang WD (2006) Expression of the chalcone synthase gene from grape and preparation of an anti-CHS antibody. Protein Expr Purif 50:223–228

    Article  CAS  PubMed  Google Scholar 

  • Timmers MA, Grace MH, Yousef GG, Lila MA (2017) Inter-and intra-seasonal changes in anthocyanin accumulation and global metabolite profiling of six blueberry genotypes. J Food Compos Anal 59:105–110

    Article  CAS  Google Scholar 

  • Trabelsi N, d’Estaintot BL, Sigaud G, Gallois B, Chaudière J (2011) Kinetic and binding equilibrium studies of dihydroflavonol 4-reductase from Vitis vinifera and its unusually strong substrate inhibition. J Biophys Chem 2:332–344

    Article  CAS  Google Scholar 

  • Trabelsi N, Petit P, Manigand C, Langlois d’Estaintot B, Granier T, Chaudiere J, Gallois B (2008) Structural evidence for the inhibition of grape dihydroflavonol 4-reductase by flavonols. Acta Crystallogr D Biol Crystallogr 64:883–891

    Article  CAS  Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366

    Article  CAS  PubMed  Google Scholar 

  • Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J Biol Chem 279:1206–1216

    Article  CAS  PubMed  Google Scholar 

  • Ueyama Y, Suzuki K, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

  • Vaknin H, Bar-Akiva A, Ovadia R, Nissim-Levi A, Forer I, Weiss D, Oren-Shamir M (2005) Active anthocyanin degradation in Brunfelsia calycina (yesterday–today–tomorrow) flowers. Planta 222:19–26

    Article  CAS  PubMed  Google Scholar 

  • Vasserot Y, Caillet S, Maujean A (1997) Study of anthocyanin adsorption by yeast lees. Effect of some physicochemical parameters. Am J Enol Vitic 48:433–437

    CAS  Google Scholar 

  • Wallace TC, Slavin M, Frankenfeld CL (2016) Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 8:32

    Article  PubMed Central  Google Scholar 

  • Wang H, Hu T, Huang J, Lu X, Huang B, Zheng Y (2013) The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance. Int J Mol Sci 14:8775–8786

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tang W, Hu Y, Zhang Y, Sun J, Guo X, Lu H, Yang Y, Fang C, Niu X (2019) A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang Plant J 99:359–378

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91:949–956

    Article  CAS  PubMed  Google Scholar 

  • Woodward GM, Needs PW, Kay CD (2011) Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res 55:378–386

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du G, Chen J, Zhou J (2015) Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 5:1–14

    Google Scholar 

  • Wu X, Beecher GR, Holden JM, Haytowitz DB, Gebhardt SE, Prior RL (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Cao S, Shi L, Chen W, Su X, Yang Z (2014) Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J Agric Food Chem 62:4778–4783

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71:3617–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Huang L, Koffas MA (2007) Biosynthesis of 5-deoxyflavanones in microorganisms. Biotechnol J Healthc Nutr Technol 2:1250–1262

    CAS  Google Scholar 

  • Yan Y, Li Z, Koffas MA (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100:126–140

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Koo IS, Song OW, Chun KO (2011) Food matrix affecting anthocyanin bioavailability. Curr Med Chem 18:291–300

    Article  CAS  PubMed  Google Scholar 

  • Yang S-M, Han SH, Kim B-G, Ahn J-H (2014) Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Zang Y, Mattozzi M, Plassmeier J, Gupta M, Wu X, Clarkson S, Koffas MA (2018) Metabolic engineering of Corynebacterium glutamicum for anthocyanin production. Microb Cell Factories 17:1–13

    Article  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Hu W, Peng X, Sun B, Wang X, Tang H (2018) Characterization of anthocyanin and proanthocyanidin biosynthesis in two strawberry genotypes during fruit development in response to different light qualities. J Photochem Photobiol B 186:225–231

    Article  PubMed  Google Scholar 

  • Zhang Z, Pang X, Xuewu D, Ji Z, Jiang Y (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52

    Article  Google Scholar 

  • Zhao C-L, Yu Y-Q, Chen Z-J, Wen G-S, Wei F-G, Zheng Q, Wang C-D, Xiao X-L (2017) Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem 214:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas MA (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Lyu Y, Li H, Koffas MA, Zhou J (2019) Fine-tuning the (2S)-naringenin synthetic pathway using an iterative high-throughput balancing strategy. Biotechnol Bioeng 116:1392–1404

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Huang Y, Zhang Y, Xu C, Lu J, Wang Y (2017) The growing season impacts the accumulation and composition of flavonoids in grape skins in two-crop-a-year viticulture. J Food Sci Technol 54:2861–2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipor G, Duarte P, Carqueijeiro I, Shahar L, Ovadia R, Teper-Bamnolker P, Eshel D, Levin Y, Doron-Faigenboim A, Sottomayor M (2015) In planta anthocyanin degradation by a vacuolar class III peroxidase in Brunfelsia calycina flowers. New Phytol 205:653–665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director of CSIR-CFTRI, Mysore, India, and the Department of Biotechnology-Biotechnology Research Assistance Council (DBT-BIRAC), Delhi, India, for giving the Research Associate award to SL.

Author information

Authors and Affiliations

Authors

Contributions

SL and NPS designed the study. SL drafted the manuscript. NPS contributed to the revision of the manuscript. The authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to L. Sunil.

Ethics declarations

Ethics approval

This article does not contain any studies on human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunil, L., Shetty, N.P. Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 106, 1783–1798 (2022). https://doi.org/10.1007/s00253-022-11835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11835-z

Keywords

Navigation