Skip to main content
Log in

Polymorphism of Got2 DNA sequences sheds light on Aegilops tauschii Coss. intraspecies divergence and origin of Triticum aestivum L.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

DNA sequences of nuclear gene Got2 was studied in 60 accessions of Aegilops tauschii, 29 of subsp. tauschii and 31 of subsp. strangulata. It was found that Got2 allozyme polymorphism in Ae. tauschii is due to a single, unique, mutation which led to replacement of glutamic acid by isoleucine in residue 256 of the enzyme molecule, encoded by Got2. As revealed by Got2 DNA sequences variation, initially in its history Ae. tauschii was presented by subsp. strangulata, and among phylogenetic lineages of subsp. strangulata, the lineage “t-91s” (TauL3) is the most ancient, a relict one. Subspecies tauschii is relatively “young”. Initially it was presented by the lineage marked by combination of allozyme alleles Got2 105 and Acph1 100. In the past it inhabited the Continental area from Caucasia to Pakistan, but later on it was forced out by newly originated, now—a major lineage of subsp. tauschii, marked by Got2 100. This lineage extended the Continental area of the species up to Kirgizstan, but actually failed to penetrate into pre-Caspian area, occupied by subsp. strangulata. These results essentially differ from those obtained previously, using chloroplast DNA (cpDNA) sequences polymorphism. As revealed by cpDNA, the major, “usual”, subsp. strangulata (TauL2) is “younger” than subsp. tauschii, which resided on phylogenetic tree between relict lineage “t-91s”of subsp. strangulata—and major subsp. strangulata. But both cpDNA and Got2 DNA sequences indicate that the level of genetic variation in subsp. tauschii is much lower than in subsp. strangulata. According to Got2 DNA sequences variation, it was Ae. tauschii subsp. strangulata lineage “k-109″ which donated genome D to Triticum aestivum L. This lineage includes accessions: k-109 from South-Eastern Precaspian Azerbaijan; KU-2105, KU-2159 from Western Precaspian Iran; KU-2080 from Eastern Precaspian Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23(17):2334–2336

    Article  CAS  PubMed  Google Scholar 

  • Dudnikov AJ (1998) Allozyme variation in Transcaucasian populations of Aegilops squarrosa. Heredity 80:248–258

    Article  Google Scholar 

  • Dudnikov AJ (2000) Multivariate analysis of genetic variation in Aegilops tauschii from the world germplasm collection. Genet Resour Crop Evol 47:185–190

    Article  Google Scholar 

  • Dudnikov AJ (2003) Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica 129:89–97

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2009) Searching for an effective conservation strategy of Aegilops tauschii genetic variation. Cereal Res Commun 37:31–36

    Article  Google Scholar 

  • Dudnikov AJ (2011) Waxiness in Aegilops tauschii: its occurrence in natural habitats of the species. Cereal Res Commun 39:283–288

    Article  Google Scholar 

  • Dudnikov AJ (2012) Chloroplast DNA non-coding sequences variation in Aegilops tauschii Coss.: evolutionary history of the species. Genet Resour Crop Evol 59:683–699

    Article  Google Scholar 

  • Dudnikov AJ (2013) Geographic patterns of low-polymorphic enzyme-encoding genes allelic variation in Aegilops tauschii Coss. J Syst Evol 51:715–721

    Article  Google Scholar 

  • Dudnikov AJ (2014a) Geographic patterns of Got1, Got2, Got3 and Est2 enzyme-encoding genes allelic variation in Aegilops tauschii Coss. Genet Resour Crop Evol 61:143–149

    Article  CAS  Google Scholar 

  • Dudnikov AJ (2014b) Aegilops tauschii Coss.: allelic variation of enzyme-encoding genes and ecological differentiation of the species. Genet Resour Crop Evol 61:1329–1344

    Article  CAS  Google Scholar 

  • Dudnikov AJ, Goncharov NP (1993) Allozyme variation in Aegilops squarrosa. Hereditas 119:117–122

    Article  CAS  Google Scholar 

  • Dudnikov AJ, Kawahara T (2006) Aegilops tauschii: genetic variation in Iran. Genet Resour Crop Evol 53:579–586

    Article  Google Scholar 

  • Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Repertorium Speciorum Novarum Regni Vegetabilis. Beihefte 55:1–228

    Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean P, Angus WJ (eds) The world wheat book. a history of wheat breeding. Lavoidier Publishing, Paris, pp 3–58

    Google Scholar 

  • Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N, Beridze T, Dudnikov AJ (2016) Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon evolution. Curr Genet 62:791–798

    Article  CAS  PubMed  Google Scholar 

  • Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180

    Article  Google Scholar 

  • Jaaska V (1980) Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. Theor Appl Genet 56:273–284

    Article  CAS  PubMed  Google Scholar 

  • Jaaska V (1981) Aspartate aminotransferase and alcohol dehydrogenase enzymes: intraspecific differentiation in Aegilops tauschii and the origin of the D genome polyploids in the wheat group. Plant Syst Evol 137:259–273

    Article  CAS  Google Scholar 

  • Jia J, Zhao S, Kong X et al (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer, Berlin, pp 1–76

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. Special report 353. College of Agricultural University of Missouri, Columbia, pp 1–142

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lagudah ES, Halloran GS (1988) Phylogenetic relationships of Triticum tauschii the D genome donor to hexaploid wheat. Theor Appl Genet 75:592–598

    Article  CAS  Google Scholar 

  • Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS ONE 3(9):e3138. doi:10.1371/journal.pone.0003138

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013) Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS ONE 8:e68310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno N, Yamasaki M, Matsuoka Y, Kawahara T, Takumi S (2010) Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Mol Ecol 19:999–1013

    Article  PubMed  Google Scholar 

  • Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Roder MS (2000) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106

    Article  CAS  Google Scholar 

  • Plaschke J, Ganal MW, Roder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    CAS  PubMed  Google Scholar 

  • Saeidi H, Tabatabaei BES, Rahimmalek M, Talebi-Badaf M, Rahiminejad MR (2008) Genetic diversity and gene-pool subdivisions of diploid D-genome Aegilops tauschii Coss. (Poaceae) in Iran as revealed by AFLP. Genet Resour Crop Evol 55:1231–1238

    Article  CAS  Google Scholar 

  • Sohail Q, Shehzad T, Kilian A, Eltayeb AE, Tanaka H, Tsujimoto H (2012) Development of diversity array technology (DArT) markers for assessment of population structure and diversity in Aegilops tauschii. Breed Sci 62:38–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takumi S, Mizuno N, Okumura Y, Kawahara T, Matsuoka Y (2008) Two major lineages of Aegilops tauschii Coss. revealed by nuclear DNA variation analysis. In: Appels R et al. (eds) The 11th International Wheat Genetics Symposium proceedings. (http://hdl.handle.net/2123/3432). Sydney University Press, Sydney, Australia

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunewaki K (1966) Comparative gene analysis of common wheat and its ancestral species II. Waxiness, growth habit and awnedness. Jpn J Bot 19:175–229

    Google Scholar 

  • van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wagenningen Agricultural University Papers, Wageningen

    Google Scholar 

  • Wang J, Luo M, Chen Z, You F, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937. doi:10.1111/nph.12164

    Article  CAS  PubMed  Google Scholar 

  • Yamane K, Kawahara T (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92(11):1887–1898

    Article  CAS  PubMed  Google Scholar 

  • Zhukovsky PM (1928) A critical–systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609 (in Russian)

    Google Scholar 

Download references

Acknowledgments

I wish to express my sincere gratitude to Dr. Vera S. Bogdanova, Dr. Aleksey V. Katokhin and Prof. Elena K. Khlestkina for the help in the course of this study. The work was supported by Russian Foundation for Basic Research, Grant 16-04-00106-a, and RF Basic project 0324-2015-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ju. Dudnikov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1s

(supplement) Amino-acid sequences of the enzyme glutamatic-oxaloacetatic transaminase, encoded by Got2, in 60 Aegilops tauschii accessions (GIF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnikov, A.J. Polymorphism of Got2 DNA sequences sheds light on Aegilops tauschii Coss. intraspecies divergence and origin of Triticum aestivum L.. Genet Resour Crop Evol 64, 1623–1640 (2017). https://doi.org/10.1007/s10722-016-0461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0461-5

Keywords

Navigation