Skip to main content
Log in

Interfacial Adhesion Energies of Uniformly Self-Formed Cr2O3 Barriers for Advanced Co Interconnects

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effects of Cr doping and postannealing on the interfacial adhesion energies between a Co interconnect and a SiO2 dielectric layer prepared by physical vapor deposition were systematically evaluated using a four-point bending test. Co, as a promising interconnect due to its scalability, is vulnerable to electromigration on its interface because the poor adhesion energy between Co and a barrier metal provides a diffusion path for atoms. To solve this problem, we suggest doping of Cr, which easily diffuses from the Co metal to the Co/SiO2 interface during postannealing, to form a uniformly distributed layer on the Co interface. Atomic force microscopy analysis clearly showed uniformly segregated Cr at the Co–Cr/SiO2 interface without hillocks or voids. The roughness root mean square values of annealed Co/TiN/Ti, annealed Co-4.7 at% Cr, and annealed Co-7.5 at% Cr were 0.72, 0.18, and 0.21 nm, respectively. In the four-point bending test, Co-4.7 at% Cr/SiO2 and Co-7.5 at% Cr/SiO2 were not delaminated at their interface, unlike pure Co and Co with the conventional barrier metal, which were delaminated at the interface with SiO2. In the X-ray photoelectron spectroscopy analysis of the Co–Cr/SiO2 interface, an increase in Cr–O bonding was clearly detected after annealing. Therefore, a properly annealed Cr2O3 self-forming barrier with strong interfacial reliability appears to be a promising diffusion barrier for Co interconnects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, F., Gardner, D.: Influence of line dimensions on the resistance of Cu interconnections. IEEE Electron. Device Lett. 19, 508 (1998). https://doi.org/10.1109/55.735762

    Article  CAS  Google Scholar 

  2. Kapur, P., Chandra, G., McVittie, J.P., Saraswat, K.C.: Technology and reliability constrained future copper interconnects. II. Performance implications. IEEE Trans. Electron. Devices. 49, 598 (2002). https://doi.org/10.1109/16.992868

    Article  CAS  Google Scholar 

  3. Gall, D.: J. Appl. Phys. 119 (2016). https://doi.org/10.1063/1.4942216

  4. Choi, D., Barmak, K.: On the potential of tungsten as next-generation semiconductor interconnects. Electron. Mater. Lett. 13, 449 (2017). https://doi.org/10.1007/s13391-017-1610-5

    Article  CAS  Google Scholar 

  5. Murarka, S.P., Hymes, S.W.: Copper metallization for ULSL and beyond. Crit. Rev. Solid State Mater. Sci. 20, 87 (1995). https://doi.org/10.1080/10408439508243732

    Article  CAS  Google Scholar 

  6. Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L.: Full copper wiring in a sub-0.25 /spl mu/m CMOS ULSI technology. Tech. Dig. Int. Electron. Devices Meet IEDM. 5, 773 (1997). https://doi.org/10.1109/IEDM.1997.650496

    Article  Google Scholar 

  7. Fuchs, K.: Math. Proc. Cambridge Philos. Soc. 34, 100 (1938)

  8. Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1, 1 (1952)

    Article  Google Scholar 

  9. Mayadas, A.F., Shatzkes, M., Janak, J.F.: Appl. Phys. Lett. 14, 345 (1969)

    Article  Google Scholar 

  10. Mayadas, A.F., Shatzkes, M.: Electrical-Resistivity Model for Polycrystalline Films The Case of Arbitrary Reflection at External Surfaces (1970). https://doi.org/10.1103/PhysRevB.1.138

  11. Gall, D.: J. Appl. Phys. 127 (2020). https://doi.org/10.1063/1.5133671

  12. Dutta, S., Beyne, S., Gupta, A., Kundu, S., Van Elshocht, S., Bender, H., Jamieson, G., Vandervorst, W., Bommels, J., Wilson, C.J., Tokei, Z., Adelmann, C.: Sub-100 nm2 Cobalt Interconnects. IEEE Electron. Device Lett. 39, 731 (2018). https://doi.org/10.1109/LED.2018.2821923

    Article  Google Scholar 

  13. Hu, C.K., Kelly, J., Huang, H., Motoyama, K., Shobha, H., Ostrovski, Y., Chen, J.H.C., Patlolla, R., Peethala, B., Adusumilli, P., Spooner, T., Quon, R., Gignac, L.M., Breslin, C., Lian, G., Ali, M., Benedict, J., Lin, X.S., Smith, S., Kamineni, V., Zhang, X., Mont, F., Siddiqui, S., Baumann, F.: in IEEE Int. Reliab. Phys. Symp. Proc. pp. 4F.11-4F.16. (2018). https://doi.org/10.1109/IRPS.2018.8353597

  14. Mont, F.W., Zhang, X., Wang, W., Kelly, J.J., Standaert, T.E., Quon, R., Ryan, E.T.: Electromigration and resistivity in on-chip Cu, Co and Ru damascene nanowires. IEEE Int. Interconnect. Technol. Conf. 7, 2017–2017 (2017). https://doi.org/10.1109/IITC-AMC.2017.7968977

    Article  Google Scholar 

  15. Griggio, F., Palmer, J., Pan, F., Toledo, N., Schmitz, A., Tsameret, I., Kasim, R., Leatherman, G., Hicks, J., Madhavan, A., Shin, J., Steigerwald, J., Yeoh, A., Auth, C.: IEEE Int. Reliab. Phys. Symp. Proc. 2018-March, 6E.31 (2018). https://doi.org/10.1109/IRPS.2018.8353641

  16. Hu, C.K., Kelly, J., Chen, J.H.C., Huang, H., Ostrovski, Y., Patlolla, R., Peethala, B., Adusumilli, P., Spooner, T., Gignac, L.M., Bruley, J., Breslin, C., Cohen, S.A., Lian, G., Ali, M., Long, R., Hornicek, G., Kane, T., Kamineni, V., Zhang, X., Mont, F., Siddiqui, S.: IEEE Int. Interconnect. Technol. Conf. 4, 2017–2017 (2017). https://doi.org/10.1109/IITC-AMC.2017.7968977

    Article  Google Scholar 

  17. Lane, M.W., Liniger, E.G., Lloyd, J.R.: J. Appl. Phys. 93, 1417 (2003). https://doi.org/10.1063/1.1532942

    Article  CAS  Google Scholar 

  18. Saraswat, K., Cho, H., Kapur, P., Koo, K.H.: Proc. IEEE Int. Symp. Circuits Syst. 2781 (2008). https://doi.org/10.1109/ISCAS.2008.4542034

  19. Lloyd, J.R., Lane, M.W., Liniger, E.G., Hu, C.K., Shaw, T.M., Rosenberg, R.: Electromigration and adhesion. IEEE Trans. Device Mater. Reliab. 5, 113 (2005). https://doi.org/10.1109/TDMR.2005.846308

    Article  CAS  Google Scholar 

  20. Ciofi, I., Roussel, P.J., Baert, R., Contino, A., Gupta, A., Croes, K., Wilson, C.J., Mocuta, D., Tokei, Z.: RC benefits of advanced metallization options. IEEE Trans. Electron. Devices. 66, 2339 (2019). https://doi.org/10.1109/TED.2019.2902031

    Article  CAS  Google Scholar 

  21. Koike, J., Wada, M.: Appl. Phys. Lett. 87, 041911 (2005). https://doi.org/10.1063/1.1993759

    Article  CAS  Google Scholar 

  22. Moon, D.Y., Han, D.S., Park, J.H., Shin, S.Y., Park, J.W., Kim, B.M., Cho, J.Y.: Plasma-enhanced atomic layer deposition of Cu–Mn films with formation of a MnSixOy barrier layer. Thin Solid Films. 521, 146 (2012). https://doi.org/10.1016/j.tsf.2012.02.015

    Article  CAS  Google Scholar 

  23. Lee, H., Jeong, M., Kim, G., Son, K., Seo, J., Kim, T-S., Park, Y.B.: Effects of Post-annealing and Co Interlayer Between SiNx and Cu on the Interfacial Adhesion Energy for Advanced Cu Interconnections. Electron. Mater. Lett. 16, 311 (2020). https://doi.org/10.1007/s13391-020-00210-7

    Article  CAS  Google Scholar 

  24. Yi, S-M., Choi, I-S., Kim, B-J., Joo, Y-C.: Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue. Electron. Mater. Lett. 14, 387 (2018). https://doi.org/10.1007/s13391-018-0043-0

    Article  CAS  Google Scholar 

  25. Huang, C-L., Lai, C-H., Tsai, P-H., Kuo, Y-L., Lin, J-C., Lee, C.: Thermal stability, adhesion and electrical studies on (Ti,Zr)N x thin films as low resistive diffusion barriers between Cu and Si. Electron. Mater. Lett. 10, 551 (2014). https://doi.org/10.1007/s13391-013-3145-8

    Article  CAS  Google Scholar 

  26. Kim, C., Kang, G., Jung, Y., Kim, J.-Y., Lee, G.-B., Hong, D., Lee, Y., Hwang, S-G., Jung, I-H., Joo, Y-C.: Robust Co Alloy Design for Co Interconnects using a Self-Forming Barrier Layer. Sci. Rep. 12, 12291 (2022). https://doi.org/10.1038/s41598-022-16288-y

  27. Dauskardt, R.H., Lane, M., Ma, Q., Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6

    Article  Google Scholar 

  28. Charalambides, P.G., Lund, J., Evans, A.G., McMeeking, R.M.: A test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. Trans. ASME. 56, 77 (1989). https://doi.org/10.1115/1.3176069

    Article  Google Scholar 

  29. Agostinelli, E., Battistoni, C., Fiorani, D., Mattogno, G., Nogues, M.: An XPS study of the electronic structure of the ZnxCd1−xCr2(X = S, Se) spinel system. J. Phys. Chem. Solids. 50, 269 (1989)

    Article  CAS  Google Scholar 

  30. Mischler, S., Mathieu, H.J., Landolt, D.: Surf. Interface Anal. 12, 429 (1988)

    Article  Google Scholar 

  31. Conner, G.R.: J. Vac Sci. Technol. 15, 343 (1978)

    Article  CAS  Google Scholar 

  32. Desimoni, E., Malitesta, C., Zambonin, P.G., Rivière, J.C.: An x-ray photoelectron spectroscopic study of some chromium–oxygen systems. Surf. Interface Anal. 13, 173 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE)(P0008458, HRD Program for Industrial Innovation) and, the Technology Innovation Program (20017189, 20011119) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Bae Park or Young-Chang Joo.

Ethics declarations

Conflict of interest

All Authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Hwang, SG., Kim, G. et al. Interfacial Adhesion Energies of Uniformly Self-Formed Cr2O3 Barriers for Advanced Co Interconnects. Electron. Mater. Lett. 18, 447–455 (2022). https://doi.org/10.1007/s13391-022-00360-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00360-w

Keywords

Navigation