Skip to main content
Log in

Thermal stability, adhesion and electrical studies on (Ti,Zr)N x thin films as low resistive diffusion barriers between Cu and Si

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study, we investigated the thermal stability, wettability, adhesion and reliability of (Ti,Zr)N x films used as the diffusion barrier between Cu and Si. (Ti,Zr)N x films were prepared by DC reactive magnetron sputtering from a Ti-5 at. % Zr alloy target in N2/Ar gas mixtures. A minimum film resistivity of 59.3 µω cm was obtained at an N2/Ar flow ratio of 2.75, which corresponds to the near stoichiometric composition (N/(Ti,Zr) ratio ∼0.95). The sheet resistance of Cu/(Ti,Zr)N0.95/Si was not significantly increased until annealing above 750°C, indicating good thermal stability. On the other hand, the adhesion energy between Cu and the (Ti,Zr)Nx film was reduced as the N/Ti ratio was increased. To obtain reliable performance on stress-induced-voiding (SIV) and electromigration (EM) tests, we proposed to use (Ti,Zr)/(Ti,Zr)N x /(Ti,Zr) tri-layers. We suggest that the interfacial adhesion between barrier and Cu plays an important role in reliability. The proposed tri-layer structure may be a promising candidate for a barrier, as it exhibits excellent reliability without increasing resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, p. 695, Prentice-Hall, Englewood Cliffs, NJ, (2000).

    Google Scholar 

  2. The International Technology Roadmap for Semiconductors, 2009 Edition, Semiconductor Industry Association, San Jose, CA (2009).

  3. K. H. Min, K. C. Chun, and K. B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996).

    Article  Google Scholar 

  4. T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, Appl. Surf. Sci. 99, 265 (1996).

    Article  Google Scholar 

  5. S. L. Cho, K. B. Kim, S. H. Min, H. K. Shin, and S. D. Kimd, J. Electrochem. Soc. 146, 3724 (1999).

    Article  Google Scholar 

  6. J. C. Lin and C. Lee, J. Electrochem. Soc. 146, 3466 (1999).

    Article  Google Scholar 

  7. A. Furuya, H. Tsuda, and S. Ogawa, J. Vac. Sci. Technol. B 23, 3 (2005).

    Google Scholar 

  8. M. Lane, R. H. Dauskardt, N. Krishna, and I. Hashim, J. Mater. Res., 15, 203 (2000).

    Article  Google Scholar 

  9. W. F. A. Besling, D. Galpin, M. Mellier, L. Svedberg, T. Mandrekar, F. Wu, S. Guggilla, S. Van, M.-L. Ignacimouttou, and J. Torees, Proceedings of Advanced Metallization Conference, p. 737, Montreal (2003).

    Google Scholar 

  10. H. Chung, M. Chang, S. Chu, N. Kumar, K. Goto, N. Maity, S. Sankaranarayanan, H. Okamura, N. Ohtsuka, and S. Ogawa, Proceedings of International Symposium on Semiconductor Manufacturing (2003).

    Google Scholar 

  11. K. Higashi, H. Yamaguchi, S. Omoto, A. Sakata, T. Katata, N. Matsunaga, and H. Shibata, Proceedings of International Interconnect Technology Conference, p. 6, San Francisco (2004).

    Google Scholar 

  12. S.-Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suther, S. Redkar, and K.-B. Kim, J. Appl. Phys. 68, 5176 (1990).

    Article  Google Scholar 

  13. P. Ecke, S. E. Schulz, M. Hecker, and T. Gessner, Microelectron. Eng. 64, 261 (2002).

    Article  Google Scholar 

  14. E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, R. P. Ruiz, and M.-A. Nicolet, IEEE Elec. Dev. Lett. 12, 321 (1991).

    Article  Google Scholar 

  15. J. S. Reid, X. Sun, E. Kolawa, and M.-A. Nicolet, IEEE Electron. Device Lett. 15, 298 (1994).

    Article  Google Scholar 

  16. X. Sun, J. S. Reid, E. Kolawa, and M.-A. Nicolet, J. Appl. Phys. 81, 656 (1997).

    Article  Google Scholar 

  17. C. L. Lin, S. R. Ku, and M. C. Chen, J. Appl. Phys. 40, 4181 (2001).

    Article  Google Scholar 

  18. E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, R. P. Ruiz, and M.-A. Nicolet, IEEE Electron. Device Lett. 12, 321 (1991).

    Article  Google Scholar 

  19. X.-P. Qu, H. Lu, T. Peng, G.-P. Ru, and B.-Z. Li, Thin Solid Films 67, 462 (2004).

    Google Scholar 

  20. S. T. Lin and C. Lee, Appl. Surf. Sci. 253, 1215 (2006).

    Article  Google Scholar 

  21. J. S. Reid, R. Y. Liu, P. M. Smith, R. P. Ruiz, and M.-A. Nicolet, Thin Solid Films 262, 218 (1995).

    Article  Google Scholar 

  22. L. W. Lin, B. Liu, D. Ren, C. Y. Zhan, G. H. Jiao, and K. W. Xu, Surf. Coat. Technol. (2012), doi:10.1016/j.surfcoat.2012.05.137 (in press).

    Google Scholar 

  23. Q. Xie, X.-P. Qu, J.-J. Tan, Y.-L. Jiang, M. Zhou, T. Chen, and G.-P. Ru, Appl. Surf. Sci. 253, 1666 (2006).

    Article  Google Scholar 

  24. Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo, Microelectron. Eng. 87, 391 (2010).

    Article  Google Scholar 

  25. L. Wang, Z. H. Cao, K. Hu, Q. W. She, and X. K. Meng, Materials Chemistry and Physics (2012), doi:10.1016/j.matchemphys.2012.05.061 (in press).

    Google Scholar 

  26. Q. Xie, Y.-L. Jiang, J. Musschoot, D. Deduytsche, C. Detavernier, R. L. Van Meirhaeghe, S. Van den Berghe, G.-P. Ru, B.-Z. Li, and X.-P. Qu, Thin Solid Films 517, 4689 (2009).

    Article  Google Scholar 

  27. T.-K. Eom, W. Sari, T. Cheon, S.-H. Kim, and W. K. Kim, Thin Solid Films (2012), doi:10.1016/j.tsf.2012.03.068 (in press).

    Google Scholar 

  28. P. Duwez and F. Odell, J. Electrochem. Soc. 97, 299 (1950).

    Article  Google Scholar 

  29. O. Knotek, M. Bohmer, and T. Leyendecker, J. Vac. Sci. Technol. A4, 2695 (1986).

    Article  Google Scholar 

  30. Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang, and C. H. Lai, J. Electrochem. Soc. 151, C176 (2004).

    Article  Google Scholar 

  31. Y. L. Cheng, B. L. Lin, S. Y. Lee, C. C. Chiu, and K. Wu, Reliability Physics Symposium Proceedings (IRPS), 2007 IEEE International, p. 128, IEEE Inst. Elec. Electron. Eng. Inc., Phoenix, Arizona (2007).

    Google Scholar 

  32. Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang, and C. H. Lai, Electrochem. Solid State Lett. 6, C123 (2003).

    Article  Google Scholar 

  33. A. Furuya, N. Hosoi, and Y. Ohshita, J. Appl. Phys. 78, 5989 (1995).

    Article  Google Scholar 

  34. A. Furuya and Y. Ohshita, J. Appl. Phys. 84, 4941 (1998).

    Article  Google Scholar 

  35. K. S. Gadre and T. L. Alford, J. Appl. Phys. 93, 919 (2003).

    Article  Google Scholar 

  36. Metals Reference Book, 5th ed., Butterworths, London, (1976).

  37. B.-L. Park, S.-R. Hah, C.-G. Park, D.-K. Jeong, H.-S. Son, H.-S. Oh, J.-H. Chung, J.-L. Nam, K.-M. Park, and J.-D. Byun, Proc. IEEE International Interconnect Technology Conference, p. 130, IEEE Inst. Elec. Electron. Eng. Inc., San Francisco, CA (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Huang Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CL., Lai, CH., Tsai, PH. et al. Thermal stability, adhesion and electrical studies on (Ti,Zr)N x thin films as low resistive diffusion barriers between Cu and Si. Electron. Mater. Lett. 10, 551–556 (2014). https://doi.org/10.1007/s13391-013-3145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3145-8

Keywords

Navigation