Skip to main content
Log in

Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reprinted with permission from Joo [56] Copyright 2012, Elsevier)

Fig. 3

(Reprinted with permission from Joo [57] Copyright 2014, Cambridge University Press)

Fig. 4

(Reprinted with permission from Joo [73] Copyright 2015, KIM and Springer)

Fig. 5

(Reprinted with permission from Joo [78] Copyright 2012, Wiley)

Fig. 6

(Reprinted with permission from Joo [91] Copyright 2014, IOP Science)

Fig. 7

(Reprinted with permission from Joo [89] Copyright 2012, Elsevier)

Fig. 8

(Reprinted with permission from Joo [92] Copyright 2016, IOP Science)

Fig. 9

(Reprinted with permission from Joo [93] Copyright 2014, Wiley–VCH Verlag GmbH & Co)

Fig. 10

(Reprinted with permission from Joo [94] Copyright 2015, Wiley–VCH Verlag GmbH & Co)

Fig. 11

(Reprinted with permission from Joo [104] Copyright 2013, AIP Publishing LLC)

Similar content being viewed by others

References

  1. Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P.: Proc. Natl. Acad. Sci. USA 98, 4835 (2001)

    Google Scholar 

  2. Khafe, A.B.M., Sakai, W., Watanabe, H., Yamauchi, H., Kuniyoshi, S., Sakai, M., Kudo, K.: Jpn. J. Appl. Phys. 53, 05FF07 (2014)

    Google Scholar 

  3. Forrest, S.R.: Nature 428, 911 (2004)

    Google Scholar 

  4. Lo, C.-Y., Kiitola-Keinänen, J., Huttunen, O.-H., Petäjä, J., Hast, J., Maaninen, A., Kopola, H., Fujita, H., Toshiyoshi, H.: Jpn. J. Appl. Phys. 48, 06FC04 (2009)

    Google Scholar 

  5. Koo, M., Park, K.I., Lee, S.H., Jeon, D.Y., Choi, J.W., Kang, K., Lee, K.J.: Nano Lett. 12, 4810 (2012)

    Google Scholar 

  6. Nam, K.T., Kim, D.W., Yoo, P.J., Meethong, N., Hammond, P.T., Chiang, Y.M., Belcher, A.M.: Science 312, 885 (2006)

    Google Scholar 

  7. Li, Y., Lee, D.K., Kim, J.Y., Kim, B., Park, N.G., Kim, K., Shin, J.H., Choi, I.S., Ko, M.J.: Energy Environ. Sci. 5, 8950 (2012)

    Google Scholar 

  8. Koshiba, Y., Onishi, T., Saeki, H., Misaki, M., Ishida, K., Ueda, Y.: Jpn. J. Appl. Phys. 53, 01AB04 (2014)

    Google Scholar 

  9. Takano, A., Kamoshita, T.: Jpn. J. Appl. Phys. 43, 7976 (2004)

    Google Scholar 

  10. Brabec, C.J.: Sol. Energy Mater. Sol. Cells 83, 273 (2004)

    Google Scholar 

  11. Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., Suo, Z.: Physica E 25, 326 (2004)

    Google Scholar 

  12. Yeo, W.-H., Kim, Y.-S., Lee, J., Ameen, A., Shi, L., Li, M., Wang, S., Ma, R., Jin, S.H., Kang, Z., Huang, Y., Rogers, J.A.: Adv. Mater. 25, 2773 (2013)

    Google Scholar 

  13. Sun, J.-Y., Keplinger, C., Whitesides, G.M., Suo, Z.: Adv. Mater. 26, 7608 (2014)

    Google Scholar 

  14. Suo, Z., Vlassak, J., Wagner, S.: China Particul 3(6), 321–328 (2005)

    Google Scholar 

  15. Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S., Suo, Z.: Mech. Mater. 37, 261–273 (2005)

    Google Scholar 

  16. Paik, J.-M., Park, Y.-J., Yoon, M.-S., Joo, Y.-C.: Scr. Mater. 48(6), 683–688 (2003)

    Google Scholar 

  17. Paik, J.-M., Park, K.-C., Joo, Y.-C.: J. Electr. Mater. 133, 48–52 (2004)

    Google Scholar 

  18. Joo, Y.-C., Thompson, C.V.: J. Appl. Phys. 81(9), 6073 (1997)

    Google Scholar 

  19. Yoon, M.-S., Lee, S.-B., Kim, O.-H., Park, Y.-B., Joo, Y.-C.: J. Appl. Phys. 100, 33715 (2006)

    Google Scholar 

  20. Yoon, M.-S., Ko, M.-K., Kim, B.-N., Kim, B.-J., Park, Y.-B., Joo, Y.-C.: J. Appl. Phys. 103(7), 073701 (2008)

    Google Scholar 

  21. Yang, T.-Y., Park, I.-M., Kim, B.-J., Joo, Y.-C.: Appl. Phys. Lett. 95, 032104 (2009)

    Google Scholar 

  22. Yang, T.-Y., Cho, J.-Y., Park, Y.-J., Joo, Y.-C.: Acta Mater. 60(5), 2012–2030 (2012)

    Google Scholar 

  23. Hwang, S.-S., Jung, S.-Y., Joo, Y.-C.: J. Appl. Phys. 104(4), 044511 (2008)

    Google Scholar 

  24. Hwang, S.-S., Jung, S.-Y., Joo, Y.-C.: J. Appl. Phys. 101, 074501 (2007)

    Google Scholar 

  25. Jung, S., Lee, S., Song, M., Kim, D.-G., You, D.S., Kim, J.-K., Kim, C.S., Kim, T.-M., Kim, K.-H., Kim, J.-J., Kang, J.-W.: Adv. Energy Mater. 4, 1300474 (2014)

    Google Scholar 

  26. Han, T.-H., Lee, Y., Choi, M.-R., Woo, S.-H., Bae, S.-H., Hong, B.H., Ahn, J.-H., Lee, T.-W.: Nat. Photon. 6, 105 (2012)

    Google Scholar 

  27. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Nat. Photon. 4, 611 (2010)

    Google Scholar 

  28. Eda, G., Fanchini, G., Chhowalla, M.: Nat. Nanotechnol. 3, 270 (2008)

    Google Scholar 

  29. Lee, J.-Y., Connor, S.T., Cui, Y., Peumans, P.: Nano Lett. 8, 689 (2008)

    Google Scholar 

  30. Krantz, J., Richter, M., Spallek, S., Spiecker, E., Brabec, C.J.: Adv. Funct. Mater. 21, 4784 (2011)

    Google Scholar 

  31. De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., Coleman, J.N.: ACS Nano 3, 1767 (2009)

    Google Scholar 

  32. Na, S.-I., Kim, S.-S., Jo, J., Kim, D.-Y.: Adv. Mater. 20, 4061 (2008)

    Google Scholar 

  33. Kim, Y.H., Sachse, C., Machala, M.L., May, C., Muller-Meskamp, L., Leo, K.: Adv. Funct. Mater. 21, 1076 (2011)

    Google Scholar 

  34. Kaltenbrunner, M., White, M.S., Glowacki, E.D., Sekitani, T., Someya, T., Sariciftici, N.S., Bauer, S.: Nat. Commun. 3, 770 (2012)

    Google Scholar 

  35. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Lijima, S.: Nat. Nanotechnol. 5, 574 (2010)

    Google Scholar 

  36. Leem, D.-S., Edwards, A., Faist, M., Nelson, J., Bradley, D.D.C., de Mello, J.C.: Adv. Mater. 23, 4371 (2011)

    Google Scholar 

  37. Lu, N., Wang, X., Suo, Z., Vlassak, J.: Appl. Phys. Lett. 91, 221909 (2007)

    Google Scholar 

  38. Lu, N., Suo, Z., Vlassak, J.: Acta Mater. 58, 1679 (2010)

    Google Scholar 

  39. Nix, W.D.: Metall. Trans. A 20, 2217 (1989)

    Google Scholar 

  40. Schwaiger, R., Dehm, G., Kraft, O.: Philos. Mag. 83, 693 (2003)

    Google Scholar 

  41. Schwaiger, R., Kraft, O.: Scr. Mater. 41, 823 (1999)

    Google Scholar 

  42. Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., Arzt, E.: Acta Mater. 56, 2318 (2008)

    Google Scholar 

  43. Kraft, O., Gruber, P.A., Mönig, R., Weygand, D.: Annu. Rev. Mater. Res. 40, 293 (2010)

    Google Scholar 

  44. Lee, Y.-Y., Kang, H.-Y., Gwon, S.H., Choi, G.M., Lim, S.-M., Sun, J.-Y., Joo, Y.-C.: Adv. Mater. 28, 1636 (2016)

    Google Scholar 

  45. Kim, C.-C., Lee, H.-H., Oh, K.H., Sun, J.-Y.: Science 353, 682–687 (2016)

    Google Scholar 

  46. Sun, J.-Y., Keplinger, C., Whitesides, G.M., Suo, Z.: Adv. Mater. 26, 7608–7614 (2014)

    Google Scholar 

  47. Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., Ding, X.D., Zhang, G.P., Sun, J.: J. Phys. D 41, 195404 (2008)

    Google Scholar 

  48. Sim, G.-D., Lee, Y.-S., Lee, S.-B., Vlassak, J.J.: Mater. Sci. Eng. A 575, 86 (2013)

    Google Scholar 

  49. Sim, G.-D., Won, S., Jin, C., Park, I., Lee, S.-B., Vlassak, J.J.: J. Appl. Phys. 109, 073511 (2011)

    Google Scholar 

  50. Park, M.H., Noh, M., Lee, S., Ko, M., Chae, S., Sim, S., Choi, S., Kim, H., Nam, H., Park, S., Cho, J.: Nano Lett. 14, 4083–4089 (2014)

    Google Scholar 

  51. Yin, Z., Lee, C., Cho, S., Yoo, J., Piao, Y., Kim, Y.S.: Small 10(24), 5047–5052 (2014)

    Google Scholar 

  52. Liang, B., Fang, L., Hu, Y., Yang, G., Zhu, Q., Ye, X.: Nanoscale 6, 4264 (2014)

    Google Scholar 

  53. Abdallah, A.A., Bouten, P., With, G.: Eng. Frac. Mech. 77(14), 2896–2905 (2010)

    Google Scholar 

  54. Grego, S., Lewis, J., Vick, E., Temple, D.: J. Soc. Inf. Dis. 13(7), 575–581 (2005)

    Google Scholar 

  55. Ghoneim, M.T., Kutbee, A., Nasseri, F.G., Bersuker, G., Hussain, M.M.: Appl. Phys. Lett. 104, 234104 (2014)

    Google Scholar 

  56. Kim, B.-J., Shin, H.-A.-S., Jung, S.-Y., Cho, Y., Kraft, O., Choi, I.-S., Joo, Y.-C.: Acta Mater. 61, 3473 (2013)

    Google Scholar 

  57. Kim, B.-J., Shin, H.A.S., Lee, J.H., Yang, T.Y., Haas, T., Gruber, P.A., Choi, I.S., Kraft, O., Joo, Y.C.: J. Mater. Res. 29, 2827 (2014)

    Google Scholar 

  58. Lee, Y.-J., Uk Lee, Y., Yeon, H.-W., Shin, H.-A.-S., Evans, L.A., Joo, Y.-C.: Appl. Phys. Lett. 103, 241904 (2013)

    Google Scholar 

  59. Gorkhali, S.P., Cairns, D.R., Crawford, G.P.: J. Soc. Inf. Display 12(1), 45–49 (2004)

    Google Scholar 

  60. Bensaid, B., Boddaert, X., Benaben, P., Gwoziecki, R., Coppard, R.: Eur. Phys. J. Appl. Phys. 55, 23907 (2011)

    Google Scholar 

  61. IPC9204: Guideline on flexibility and stretchability testing for printed electronics (2016)

  62. IEC 62899-202-5: Printed electronics—part 202-5: Materials—Conductive Ink—Mechanical Bending Test of a Printed Conductive Layer on a Substrate

  63. Schwaiger, R., Kraft, O.: Acta Mater. 51, 195 (2003)

    Google Scholar 

  64. Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., Kraft, O.: Acta Mater. 54, 3127 (2006)

    Google Scholar 

  65. Wang, D., Volkert, C.A., Kraft, O.: Mater. Sci. Eng. A 493, 267 (2008)

    Google Scholar 

  66. Zhang, G.P., Sun, K.H., Zhang, B., Gong, J., Sun, C., Wang, Z.G.: Mater. Sci. Eng. A 483, 387 (2008)

    Google Scholar 

  67. Kraft, O., Schwaiger, R., Wellner, P.: Mater. Sci. Eng. A 319, 919 (2001)

    Google Scholar 

  68. Sun, X.J., Wang, C.C., Zhang, J., Liu, G., Zhang, G.J., Ding, X.D.: J. Phys. D: Appl. Phys. 41, 195404 (2008)

    Google Scholar 

  69. Suresh, S.: Fatigue of Materials, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  70. Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill Book Company, London (1988)

    Google Scholar 

  71. Coffin, L.F.: Trans. ASME 76, 931 (1954)

    Google Scholar 

  72. Manson, S.S.: Report, vol. 1170. Lewis Flight Propulsion Laboratory, Cleveland (1954)

    Google Scholar 

  73. Lee, Y.-J., Shin, H.-A.-S., Nam, D.-H., Yeon, H.-W., Nam, B., Woo, K., Joo, Y.-C.: Electron. Mater. Lett. 11(1), 149 (2015)

    Google Scholar 

  74. Lacour, S.P., Wagner, S., Huang, Z., Suo, Z.: Appl. Phys. Lett. 82, 2404 (2003)

    Google Scholar 

  75. Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A.: Science 323, 1590 (2009)

    Google Scholar 

  76. Carta, R., Jourand, P., Hermans, B., Thoné, J., Brosteaux, D., Vervust, T., Bossuyt, F., Axisa, F., Vanfleteren, J., Puers, R.: Sens. Actuat. A 156, 79 (2009)

    Google Scholar 

  77. Kim, D.H., Song, J., Won, M.C., Kim, H.S., Kim, R.H., Liu, Z., Huang, Y.Y., Hwang, K.C., Zhang, Y.W., Rogers, J.A.: Proc. Natl. Acad. Sci. USA 105, 18675 (2008)

    Google Scholar 

  78. Kim, B.-J., Cho, Y., Jung, M.-S., Shin, H.-A.-S., Moon, M.-W., Han, H.N., Nam, K.T., Joo, Y.-C., Choi, I.-S.: Small 8, 3300 (2012)

    Google Scholar 

  79. Ko, S.H., Pan, H., Grigoropoulos, C.P., Luscombe, C.K., Fréchet, J.M., Poulikakos, D.: Nanotechnology 18, 345202 (2007)

    Google Scholar 

  80. Van OschJ, T.H.J., Perelaer, J., De Laat, A.W.M., Schubert, U.S.: Adv. Mater. 20, 343 (2008)

    Google Scholar 

  81. Lee, H.M., Choi, S.Y., Kim, K.T., Yun, J.Y., Jung, D.S., Park, S.B., Park, J.: Adv. Mater. 23, 5524 (2011)

    Google Scholar 

  82. H. M. Lee, S. Y. Choi, A. Jung, S. H. Ko Angew. Chem. Int. Edn. 52 7718 (2013)

  83. Lee, H.H., Chou, K.S., Huang, K.C.: Nanotechnology 16, 2436 (2005)

    Google Scholar 

  84. Jeong, S., Kim, D., Lee, S., Park, B.K., Moon, J.: Mol. Cryst. Liq. Cryst. 459, 35 (2006)

    Google Scholar 

  85. Park, J.W., Baek, S.G.: Scr. Mater. 55, 1139 (2006)

    Google Scholar 

  86. Jung, J.K., Choi, S.H., Kim, I., Jung, H.C., Joung, J., Joo, Y.C.: Philos. Mag. 88, 339 (2008)

    Google Scholar 

  87. Greer, J.R., Street, R.A.: Acta Mater. 55, 6345 (2007)

    Google Scholar 

  88. Kim, N.R., Lee, J.H., Yi, S.M., Joo, Y.C.: J. Electrochem. Soc. 158, K165 (2011)

    Google Scholar 

  89. Lee, J.H., Kim, N.R., Kim, B.J., Joo, Y.C.: Carbon 50, 98 (2012)

    Google Scholar 

  90. Yi, S.M., Lee, J.H., Kim, N.R., Oh, S., Jang, S., Kim, D., Joung, J., Joo, Y.C.: J. Electrochem. Soc. 157, K254 (2010)

    Google Scholar 

  91. Kim, B.-J., Haas, T., Friederich, A., Lee, J.-H., Nam, D.-H., Binder, J.R., Bauer, W., Choi, I.-S., Joo, Y.-C., Gruber, P.A., Kraft, O.: Nanotechnology 25, 125706 (2014)

    Google Scholar 

  92. Kim, B.J., Shin, H.A.S., Lee, J.H., Joo, Y.C.: Jpn. J. Appl. Phys. 55, 06JF01 (2016)

    Google Scholar 

  93. Hwang, B., Shin, H.-A.-S., Kim, T., Joo, Y.-C., Han, S.M.: Small 10(16), 3397 (2014)

    Google Scholar 

  94. Jung, M.-S., Seo, J.-H., Moon, M.-W., Choi, J.W., Joo, Y.-C.: Adv. Energy Mater. 5, 1400611 (2015)

    Google Scholar 

  95. Lee, Y.-Y., Kang, H.-Y., Gwon, S.H., Choi, G.M., Lim, S.-M., Sun, J.-Y., Joo, Y.-C.: A strain-intensive stretchable electronic conductor: PEDOT-PSS/acrylamide organogels. Adv. Mater. 28, 1636 (2016)

    Google Scholar 

  96. Kim, C.-C., Lee, H.-H., Oh, K.H., Sun, J.-Y.: Highly stretchable, transparent ionic touch panel. Science 353, 682 (2016)

    Google Scholar 

  97. Kim, D.-H., Lu, N., Ghaffari, R., Rogers, J.A.: Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater. 4, e15 (2012)

    Google Scholar 

  98. Fukuda, K., Takeda, Y., Mizukami, M., Kumaki, D., Tokito, S.: Sci. Rep. 4, 3947 (2014)

    Google Scholar 

  99. Root, S.E., Savagatrup, S., Printz, A.D., Rodriquez, D., Lipomi, D.J.: Chem. Rev. 117, 6467 (2017)

    Google Scholar 

  100. Gupta, S.K., Jha, P., Singh, A., Chehimi, M.M., Aswal, D.K.: J. Mater. Chem. C 3, 8486 (2015)

    Google Scholar 

  101. Amundson, K., Ewing, J., Kazlas, P., McCarthy, R., Albert, J.D., Zehner, R., Drzaic, P., Rogers, J., Bao, Z., Baldwin, K.: SID Symp. Digest Tech. Pap. 32, 160 (2001)

    Google Scholar 

  102. Smith, D.A., Holmberg, V.C., Korgel, B.A.: ACS Nano 4, 2356 (2010)

    Google Scholar 

  103. Mishra, Y.K., Kaps, S., Schuchardt, A., Paulowicz, I., Jin, X., Gedamu, D., Freitag, S., Claus, M., Wille, S., Kovalev, A., Gorb, S.N., Adelung, R.: Part. Part. Syst. Charact. 30, 775 (2013)

    Google Scholar 

  104. Lee, Y.-J., Lee, Y.U., Yeon, H.-W., Shin, H.-A.-S., Evans, L.A., Joo, Y.-C.: Appl. Phys. Lett. 103, 241904 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported by “Development of Interconnection System and Process for Flexible Three Dimensional Heterogeneous Devices” funded by MOTIE (Ministry of Trade, Industry and Energy) and the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP; Ministry of Science, ICT and Future Planning) (No. 2017R1C1B5017889) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byoung-Joon Kim or Young-Chang Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, SM., Choi, IS., Kim, BJ. et al. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue. Electron. Mater. Lett. 14, 387–404 (2018). https://doi.org/10.1007/s13391-018-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0043-0

Keywords

Navigation