Skip to main content

Advertisement

Log in

Interfacial adhesion energies of Ru–Mn direct plateable diffusion barriers prepared by atomic layer deposition for advanced Cu interconnects

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Mn addition and post-annealing on the interfacial decohesion energies of Ru direct plateable diffusion barrier layer prepared by atomic layer deposited (ALD) for advanced Cu interconnect applications were systematically evaluated using a four-point bending test. The interfacial decohesion energy increased with the addition of Mn to the Ru thin films and further increased after post-annealing at 500 °C for 30 min in a hydrogen atmosphere, and the interfacial decohesion energies were 3.63, 6.74, and 20.09 J/m2 for the as-deposited Cu/Ru/SiO2, as-deposited Cu/Ru-4.2 at.%Mn/SiO2, and annealed Cu/Ru-4.2 at.%Mn/SiO2, respectively. The scanning transmission electron microscopy (STEM) and energy dispersive spectroscopy (EDS) analysis results clearly indicated that the Mn in the annealed ALD Ru–Mn film diffused toward a Ru/SiO2 interface and Mn silicate was formed at the Ru/SiO2 interface. Additionally, the results of the X-ray photoelectron spectroscopy (XPS) analysis clearly showed that MnSiO3 and MnSi were formed at the Ru/SiO2 interface. Consequently, the findings of the XPS and STEM/EDS study revealed that there was an adequate correlation between the interfacial decohesion energy and the MnSi and MnSiO3 bond formed at the Ru–Mn /SiO2 interface. Therefore, a properly annealed ALD Ru-4.2Mn thin film appears to be a hopeful diffusion barrier layer candidate with strong interfacial reliability for advanced Cu interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.-T. Jang, S.-Y. Lee, S.-K. Na, S.-K. Lee, J.-M. Baek, W.-K. You, O.-H. Park, R.-H. Kim, H.-S. Oh, Y.-C. Joo, IEEE Electron Device Lett. 39(7), 971 (2018)

    Article  Google Scholar 

  2. Z. Wu, F. Chen, G. Shen, Y. Hu, S. Pethe, J. J. Lee, J. Tseng, W. Suen, R. Vinnakota, K. Kashefizadeh, M. Naik, in Proceedings of 2018 IEEE International Interconnect Technology Conference (IITC) (2018)

  3. S.M. Rossnagel, T.S. Kuan, J. Vac. Sci. Technol. B 22(1), 240 (2004)

    Article  CAS  Google Scholar 

  4. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Engelhardt, Phys. Rev. B. 66, 073101 (2002)

    Article  Google Scholar 

  5. K. Yu, T. Hasegawa, T. H. M. Oie, F. Amano, S. Consiglio, C. Wajda, K. Maekawa, G. Leusink, in Proceedings of the IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) (2014)

  6. Z. Wu, R. Li, X. Xie, W. Suen, J. Tseng, N. Bekiaris, R. Vinnakota, K. Kashefizadeh, M. Naik, in Proceedings of the IEEE International Interconnect Technology Conference (IITC) (2018)

  7. H.H. Radamson, H. Zhu, Z. Wu, X. He, H. Lin, J. Liu, J. Xiang et al., Nanomaterials 10, 1555 (2020)

    Article  CAS  Google Scholar 

  8. K. Motoyama, O. Van Der Straten, J. Maniscalco, H. Huang, Y. B. Kim, J. K. Choi, J. H. Lee, C. -K. Hu, P. McLaughlin, T. Standaert et al., in Proceedings of the IEEE International Interconnect Technology Conference (IITC) (2018)

  9. M. Haneda, J. Iijima, J. Koike, Appl. Phys. Lett. 90, 252107 (2007)

    Article  Google Scholar 

  10. J. Koike, M. Wada, Appl. Phys. Lett. 87, 041911 (2005)

    Article  Google Scholar 

  11. J.-H. Park, D.-S. Han, K.-D. Kim, J.-W. Park, AIP Adv. 8, 065313 (2018)

    Article  Google Scholar 

  12. A. Joi, K. Venkatraman, K.-C. Tso, D. Dictus, Y. Dordi, P.-W. Wu, C.-W. Pao, R. Akolkar, ECS J. Solid State Sci. Technol. 8(9), P516 (2019)

    Article  CAS  Google Scholar 

  13. J. P. Gambino, in Proceedings of 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (2010)

  14. K. Barmak, C. Cabral Jr., K.P. Rodbell, J.M.E. Harper, J. Vac. Sci. Technol. B 24(6), 2485 (2006)

    Article  CAS  Google Scholar 

  15. H.-J. Lee, T.E. Hong, S.-H. Kim, J. Alloys Compd. 686, 1025 (2016)

    Article  CAS  Google Scholar 

  16. J.-K. Kim, T.-H. Cheon, S.-H. Kim, Y.-B. Park, Jpn. J. Appl. Phys. 51, 10NC21 (2012)

    Article  Google Scholar 

  17. T.E. Hong, T. Cheon, S.-H. Kim, J.-K. Kim, Y.-B. Park, O.J. Kwon, M.J. Kim, J.J. Kim, J. Alloys Compd. 580, 72–81 (2013)

    Article  CAS  Google Scholar 

  18. P. Casey, A.P. McCoy, J. Bogan, C. Byrne, L. Walsh, R. O’Connor, G. Hughes, J. Phys. Chem. C 117(31), 16136 (2013)

    Article  CAS  Google Scholar 

  19. T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, Appl. Phys. Lett. 86, 083104 (2005)

    Article  Google Scholar 

  20. C.-W. Chen, J.-S. Jeng, J.-S. Chen, J. Electrochem. Soc. 157(11), A1170 (2010)

    Article  Google Scholar 

  21. S. Kumar, D. Greenslit, T. Chakraborty, E.T. Eisenbraun, J. Vac. Sci. Technol. A 27(3), 572 (2009)

    Article  CAS  Google Scholar 

  22. T.-K. Eom, S.-H. Kim, K.-S. Park, S. Kim, H. Kim, Electrochem. Solid-State Lett. 14(1), A75 (2011)

    Article  Google Scholar 

  23. T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin, E. Andideh, in Proceedings of 2011 IEEE International Interconnect Technology Conference (IITC) (2011)

  24. L.G. Wen, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven, S. Dutta, M.I. Popovici, N. Heylen, I. Ciofi, K. Vanstreels, F.W. Østerberg, O. Hansen, D.H. Petersen, K. Opsomer, C. Detavernie, C.J. Wilson, S.V. Elshocht, K. Croes, J. Bömmels, Z. Tőkei, C. Adelmann, ACS Appl. Mater. Interfaces 8(39), 26119 (2016)

    Article  CAS  Google Scholar 

  25. H. Li, D.B. Farmer, R.G. Gordon, Y. Lin, J. Vlassak, J. Electrochem. Soc. 154(12), D642 (2007)

    Article  CAS  Google Scholar 

  26. P. Wang, X.-P. Qu, Y. Dordi, in Proceedings of 2020 IEEE International Interconnect Technology Conference (IITC) (2020)

  27. R.H. Dauskardt, M. Lane, Q. Ma, N. Krishna, Eng. Frac. Mech. 61(1), 1–20 (1998)

    Article  Google Scholar 

  28. P.G. Charalambides, J. Lund, A.G. Evans, R.M. McMeeking, J. Appl. Mech. 56(1), 269 (1989)

    Article  Google Scholar 

  29. H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojim, H. Sato, Y. Shimogakia, J. Electrochem. Soc. 152(8), H1228 (2005)

    Google Scholar 

  30. K.-K. Wang, C.-W. Hsu, L. Chang, D. Gan, T.-R. Chen, K.-C. Yang, J. Electrochem. Soc. 159(12), A1967 (2012)

    Article  Google Scholar 

  31. A.P. McCoy, J. Bogan, C. Byrne, P. Casey, J. G. Lozano, P. D. Nellist, G. Hughes, in Proceedings of 2014 IEEE International Interconnect Technology Conference (IITC) (2014)

  32. H. Lee, M. Jeong, G. Kim, K. Son, J. Seo, T.-S. Kim, Y.-B. Park, Electron. Mater. Lett. 16(4), 311 (2020)

    Article  CAS  Google Scholar 

  33. J.-J. Chang, C.-P. Liu, T.-E. Hsieh, Y.-L. Wang, Surf. Coat. Technol. 200, 3314 (2006)

    Article  CAS  Google Scholar 

  34. A.S. Orekhova, T.S. Kamilovb, A.G. Gaibovb, K.I. Vakhabovb, V.V. Klechkovskaya, Tech. Phys. 55(6), 874 (2010)

    Article  Google Scholar 

  35. Y. Au, Y. Lin, H. Kim, E. Beh, Y. Liu, R.G. Gordon, J. Electrochem. Soc. 157(6), D248 (2010)

    Article  Google Scholar 

  36. P. Casey, J. Bogan, A. McCoy, J.G. Lozano, P.D. Nellist, G. Hughes, J. Appl. Phys. 112, 064507 (2012)

    Article  Google Scholar 

  37. C. Byrne, B. Brennan, A.P. McCoy, J. Bogan, A. Brady, G. Hughes, ACS Appl. Mater. Interfaces 8(4), 2470 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOTIE (Ministry of Trade, Industry & Energy (10067804 and 20003524)) and KSRC(Korea Semiconductor Research Consortium) support program for the development of the future semiconductor device.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Hyun Kim or Young-Bae Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, K., Kim, YH., Kim, SH. et al. Interfacial adhesion energies of Ru–Mn direct plateable diffusion barriers prepared by atomic layer deposition for advanced Cu interconnects. J Mater Sci: Mater Electron 32, 20559–20569 (2021). https://doi.org/10.1007/s10854-021-06567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06567-1

Navigation